Keep the Ball Rolling:
Analyzing Release Cadence in GitHub Projects

Oz Kilic
Carleton University
Ottawa, ON, Canada
ozkilic@cmail.carleton.ca

Abstract—Release cadence is the measure of time between
software releases, both internal and external. Few studies analyze
popular open-source projects’ release cadence and use. In this
work, we gathered over 8,000 GitHub projects from four popular
programming languages; Go, Java, Python, and Ruby. Project
were categorized into slow, modern, rapid, and rapid+ release
cadence groups. We determined that only 13% of projects had a
rapid release cadence of under 30 days. Applying NLP and topic
modeling, we extracted the top 5 frequent topics for programming
languages and obtained insights into their common uses. For
example, Go projects are commonly used for Kubernetes tooling,
while Ruby projects often leverage Rails for web development.
We observed no significant relationship between frequent topics
and the release cadence categories. This finding suggests release
cadences are independent of the type of software delivered for a
programming language.

Index Terms—Release cadence, README, GitHub, program-
ming languages, topic modeling

I. INTRODUCTION

Release engineering encompasses the entire software release
cycle, from planning and development to delivering high-
quality software to the end user [1]. A big part of modern
release engineering is how quickly software can be released to
the customer. Release cadence is the measure of time between
software releases, both internal and external. Each project typ-
ically embraces a particular release cycle and release cadence.

Release engineering [2; 3; 4] and release cadence [1; 5; 6]
have been previously studied. Other techniques, such as con-
tinuous development [7; 8], and release pipelines [9; 10], have
also been shown to have many benefits. While not many peer-
reviewed studies have been published on the release cadence
of private companies some news articles and blogs discuss the
release pipelines and strategies they use [11; 12]. Similar to
this paper, some studies analyze the release cadence of OSS
projects [13]. However, the existing studies do not offer a
large-scale view of release cadences across multiple projects.
Without a larger dataset of projects, it is unclear to what
extent software development projects adopt modern release
cycles. Also, release cadence may depend on not only the
language but also the application/purpose. The goal of this
work is to address this gap by performing a release cadence
analysis at scale, i.e., GitHub projects developed in different
programming languages. To the best of our knowledge, this
is the first study to analyze the release cadence at scale. The

Nathaniel Bowness
University of Ottawa
Ottawa, ON, Canada

nbown088 @uottawa.ca

Olga Baysal
Carleton University
Ottawa, ON, Canada
olga.baysal @carleton.ca

results of this work can provide developers and researchers
insights into how quickly software (e.g., applications) is being
released on GitHub.

In this paper, we answer the following research questions:

RQ1: What percentage of projects fall into different release
cadence categories? Does the percentage vary between
languages?

What are the most frequent topics covered in a project’s
README for each language?

Is there a relationship between projects’ release cadence
category and topics?

RQ2:

RQ3:

II. METHODOLOGY
A. Data Collection

To answer our research questions, we mined the World
of Code (WoC) dataset [14] which includes projects from
GitHub, GitLab, and Bitbucket. We considered the WoC'’s
summary-level information, i.e., project properties that can be
queried and filtered using MongoDB with specific criteria [14].
We collected the data for Go, Java, Python, and Ruby projects
omitting toy-like, inactive, or very recent projects. Thus, our
dataset contains projects with at least 150 commits, 20 stars,
10 contributors, and 10 files of the primary programming
languages while having the first commit before 2019 and the
last commit in 2021.

We used the GitHub API [15] to retrieve all releases for
projects returned from the WoC since WoC did not include the
release information that we needed to calculate the average
release cadence. Since the GitHub data in the WoC dataset
covers up to 2021, we limited the README files collected
using the GitHub API to the end of 2021.

Unsurprisingly, some of the projects queried from the WoC
dataset were no longer available on GitHub as of December
2022. Table I reports the project count for each filter applied
during the data collection process. We discuss these filters and
restrictions in the following sections.

B. Release Cadence

The release cadence defines how often software is delivered
to customers/users. In OSS software development, a release is
created whenever a software version is ready for deployment.
We applied a number of filters on the collected dataset of
project releases to ensure the release cadence can be studied.

TABLE I: Data collection and our datasets (# of projects).

Lang. WoC With With With With Total
README Releases Filtered Filtered Releases
READMEs Releases
Go 2,358 2,307 1,317 900 1,152 11,218
Java 1,141 1,139 457 2,149 394 23,463
Python 4,663 4,613 2,330 4,317 2,012 33,310
Ruby 927 925 593 1,063 543 6,667

First, projects with less than two releases were removed from
the dataset. At least two releases are required to calculate the
average release cadence of the repository. The average release
cadence was calculated as the average number of days between
all consecutive releases. Pre-releases were also removed from
the dataset.

Due to the numerous software versioning standards [16; 17],
all releases published on GitHub, whether patches, minor up-
dates, or major releases, were treated as a individual releases,
and only the date and time of the release are considered.

Once the average release cadence for each project was
calculated, each project was classified into one of the four
categories. These four categories were selected and based on
state-of-the-art research on release engineering. Adams and
Mclntosh [1] have found that modern release engineering is
associated with the release frequency of every 2-6 weeks.
They also talked about daily software releases by companies
like Netflix and Facebook. A study on OSS release cycles on
GitHub has defined a rapid release cycle when software is
released every 5 to 35 days [13].

Based on the state-of-the-art research on this topic, we have
defined four release cadence categories such as rapid+, rapid,
modern, and slow. These categories include projects that are
released faster than seven days, between seven and 30 days,
between 30 and 90 days, and slower than 90 days, respectively.

C. Topic Modeling

To classify projects in an unsupervised manner and explore
textual patterns, we pre-processed the previously gathered
README files as markdown. All files were cleaned of non-
ASCII characters and HTML tags, and the files were converted
to HTML. We discarded files without at least one H1 or H2
element. By manually analyzing samples from the dataset,
we observed that the most informative part of the files is the
first paragraph, describing the purpose/function of a project.
Therefore, we retrieved the first text paragraph that had at least
four characters and three token outputs.

After running the files through an NLP pipeline with typical
steps (e.g., lemmatization, negation handling) and obtaining
tokenized representations of the project README files, we
identified a few projects with suspiciously lengthy first para-
graphs (more than 250 tokens). We observed that one project
had mostly foreign characters in this paragraph, while the rest
had paragraphs that were not properly formatted. Such projects
were discarded. The remaining projects, grouped by language,
had on average, an approximate token count of 12—15 in their
relevant paragraph.

Topic modeling is an unsupervised process of extracting
topics in text mining. Currently, the most common topic

modeling approaches are based on Latent Dirichlet Allocation
(LDA) [18], and have been leveraged in the software engi-
neering research [19; 20; 21]. Topic modeling was applied to
the remaining 900, 2,149, 4,317, and 1,063 projects written
in Go, Java, Python, and Ruby, respectively. We leveraged
Biterm Topic Modeling (BTM), an improved version of LDA,
due to its superiority with short texts compared to LDA [22].
We used the full paragraphs as our context window to extract
biterms. Discarding the bottom 2% occurrences in the corpus,
we limited our corpus to 94, 79, 86, and 71 terms for Go,
Java, Python, and Ruby, respectively.

We used lower prior alpha probabilities to obtain more
cohesive and distinct topics. For each language, we used
hyperparameter optimization to decide the number of topics,
between 5 and 50, and the alpha division factor, between 2
and 50, where the alpha is 1/(number of topics * division fac-
tor). We optimized these parameters to minimize the entropy
calculated from the top five topics based on the number of
documents assigned to them using the highest topic likelihood.
We manually explored the resulting major topic themes for
each language by analyzing the top terms and documents for
each topic. From the top five topics, we computed the top 10
relevant terms based on the term relevance formula [23]. We
used a A value of 0.6 as suggested. For each model, we used
the suggested number of iterations for efficiency [24].

D. Topics and Cadences

We selected projects that had both extracted topics and
average release cadences, i.e., 524, 1,067, 1,905, and 384
projects written in Go, Java, Python, and Ruby, respectively. To
explore the relationship between topics and release cadences,
we conducted two alternative non-parametric tests. First, for
each topic, we used the Kruskal-Wallis test to see whether
there is a significant rank distribution difference between
cadence groups based on their topic likelihoods. We believe
this is a more sound approach as it does not strictly pigeonhole
repositories into a single topic.

Then, by combining the rapid cadence groups (rapid and
rapid+) and non-rapid cadence groups (modern and slow), we
obtained a rapidness feature. We used this feature to conduct
Fisher’s exact test for each topic. For this test, we assigned
topics on repositories based on the repositories’ highest topic
likelihoods.

III. RESULTS AND DISCUSSION

The dataset for this project is composed of popular GitHub
projects from four popular programming languages. After fil-
ters, the dataset contained 74,658 releases from 4,101 GitHub
projects (45% of the total projects considered) that were
analyzed to find the average release cadence. Topic modeling
was applied to 8,429 README:s.

A. What percentage of projects fall into different release
cadence categories? Does the percentage vary between lan-
guages? (RQI)

1) Release Cadence Categorization: We analyzed the aver-
age release cadence of the projects in two categories. First, we

looked at projects with commits before 2019 and after 2021
(all-time). However, it is possible that some projects were not
active throughout that entire interval. Some projects were also
created before 2015, so they may have been inactive for years
but have recently become active again. To address the problem
of long-running projects affecting the results, for the same
projects, release cadences were also categorized using only
the releases from 2022, disregarding earlier releases. For both
versions, we later calculated the median release cadence.

The median cadence for all the projects was 100 days when
considering all releases, corresponding to the slow category.
The 25" and 75" percentiles of the average cadences were 50
and 200.3 days. The distribution of the projects in the slow,
modern, rapid, and rapid+ categories were 54.8%, 32.6%,
10.4%, and 2.24%, respectively. The significant majority of
projects being slow or modern may be attributed to the time
for which these projects have been active.

The distribution of the release cadence categories using
2022 releases shows a different picture, as all categories
except slow become significantly more common. The 25%,
50" (median), and 75" percentiles of average release cadences
were 22.2, 44.3, and 82 days in 2022. This release cadence
improvement is likely to be also attributed to more modern
release engineering practices, such as CI/CD, agile method-
ologies, and a more significant focus on delivering software
quickly.

2) Release Cadence per Language: The median release
cadence for projects in the four different languages was 75.2,
92.8, 107.8, and 132 days for Go, Java, Python, and Ruby,
respectively, shown in Table II. Based on the categorization,
only Go has the majority of projects that release with a modern
or better faster cadence. Java trails Go, with 48% of the
projects releasing with modern or faster release cadences. Both
Go and Java are considered multi-purpose, statically-typed
languages. The faster release cadence for projects in these
languages may be attributed to their applications and usage.
Many OSS projects in these languages, such as Spring [25] and
Kubernetes [26], have been available for years and supported
by large companies. It should also be noted that Go is the
newest of the four programming languages, released as stable
in 2012, so it may not be as influenced by long-running
GitHub projects [27]. The two languages with the slowest
average release cadence are Ruby and Python. Both of these
languages can be described as scripting languages. Once again,
the applications developed in these languages may influence
the average release cadence.

Similarly, the distribution of the release cadence categories
from only 2022 shows that all languages have a shorter average
release cadence. The most significant change was for Ruby,
with a significant percentage of projects moving from slow to
modern or faster cadence categories in 2022.

A possible explanation for Ruby’s cadence change can be a
result of large companies such as Shopify making significant
investments in the language [28]. This work can be extended
to study the evolution of the release cadence for a language
since programming languages may undergo changes, paradigm

TABLE II: Release cadence category (%) per language.

Time Release Cadence Go Java Python Ruby Total
Slow 43.6 51.6 57.7 64.7 54.8
All-time Modern 372 35 31.4 24.9 32.6
! Rapid 15.5 11.3 8.95 8.12 10.4
Rapid+ 3.68 2.08 1.94 2.28 224

Slow 20.6 21 234 214 222

2022 Modern 48.6 414 439 357 43.4
Rapid 26.3 29.4 24.6 30.4 26.5

Rapid+ 4.53 8.17 8.14 12.5 7.89

shifts, and community support.

B. What are the most frequent topics covered in a project’s
README for each language? (RQ2)

Hyperparameter optimization yielded five topics for all
languages except Python, for which we found that having
eight topics was the best. The top five topics, along with
their document counts, top 10 relevant terms, top two-three
repositories, and manually generated summaries are reported
for each language in Table III.

Our topic terms and manual inspections showed that some
READMESs had meta-informative first paragraphs. Rather than
explaining what the project does, these paragraphs include but
are not limited to explanations about the project not being
maintained, version information, dependencies, and directives
to users/contributors. Nevertheless, our topic modeling shows
it is possible to extract valuable information from README
files. Although all languages had one or more topics related to
various tools and libraries, some other topics showed relatively
niche use cases for the programming language.

Data interchange, API clients, and Kubernetes management
were popular domains for Go projects. Considering that both
Go and Kubernetes were developed by Google [29; 30],
and Kubernetes is written in Go [26], Go seems to be the
natural choice of language for Kubernetes-related projects.
Furthermore, while it is a relatively small-sized topic, one topic
references other programming languages that are written and
supported by Go, such as Rum and Tengo.

Although Kotlin was announced to be supported in Android
development in 2017 [31], our results suggest that Android-
focused projects and libraries dominate Java topics. There
were topics referencing software plugins and web applications
such as Spring, but they were seen in fewer projects. Another
topic, albeit relatively small, was specifically about Android
view libraries that provide UI components.

Nowadays, Python is mainly known for its machine learning
and scripting uses, which is observable in our topic results
in two separate groups. However, the second-largest Python
topic indicates a significant portion is oriented toward web
applications, specifically Django. Python projects had a greater
number of topics after optimization. The largest topics were
related to tools/libraries/implementations. Since the topics in
Python were much more balanced compared to other lan-
guages it may suggest Python has a wider variety of use cases.

Multiple Ruby topics were related to a web framework
called Ruby on Rails. This indicates that Rails is a popular
framework for web development in the Ruby programming

TABLE III: Summary of the top five topics per language.

Lang. Topic ID Documents Top Terms Topic Summary Top Repositories
3 520 standard, json, format, sql, need, implement, Data related projects, data interchange proto- capnproto/go-capnproto2, emersion/go-
database, file, package, build cols, and JSON message, goccy/go-json
0 226 github, com, framework, set, data, cloud, function, Tools and frameworks genuinetools/ghbOt, google/cloud-print-
enable, open, allow connector, isiaon/esm
1 84 client, api, version, new, http, please, repository, API clients and projects with metea- bxcodec/faker, cloudfoundry/diego-ssh, cloud-
Go request, window, change informative first paragraphs foundry/lager
4 44 kubernetes, manage, operator, resource, cluster, Libraries facilitating managing Kubernetes ccojocar/sso-operator, —etungsten/bottlerocket-
terraform, platform, provider, like, base systems update-operator, jgramoll/terraform-provider-
spinnaker
2 10 language, feature, framework, time, include, sys- Languages written in Go and other miscella- avelino/gin, d5/tengo, dblOnull/flaggy
tem, command, example, line, native neous projects
3 1502 android, app, user, database, design, format, SDK, Android-focused projects and libraries alexcohn/ffmpeg-android, atakli/shareviahttp,
google, write, library douglasjunior/android-simple-tooltip
0 394 build, plugin, gradle, test, maven, system, set, run, Plugins for different software written in Java bitbucket.org/ijabz/jaudiotagger, ~ ChestShop-
help, allow authors/ChestShop-3, git.eclipse.org/r/emf
2 132 see, language, apache, development, contain, start, Miscellaneous projects with meta- android-password-store/Android-Password-
Java example, please, repository, version informative first paragraphs Store, camunda/camunda-bpm-reactor,
ebanx/swipe-button
4 38 image, high, time, open, feature, way, tool, source, User interface (UI) and Android view li- akshay2211/PixImagePicker, Chufyjj/Ghost,
find, need braries fiji/Stitching
1 30 spring, service, api, web, client, interface, appli- Web applications and libraries OSRYPPRO/APKMirror, eclipse-ee4j/cdi,
cation, implementation, implement, provide florianberthe/spring-authorization-server
2 1500 data, task, system, format, read, machine, run, one, Miscellaneous tools, libraries, and implemen- Boulder-Investment-Technologies/Ippls, chakki-
module, file tations works/seqeval
0 821 django, framework, platform, application, project, Web application-related projects awaazde/drf-friendly-errors, aykut/django-bulk-
collection, easy, database, allow, simple update, bitmazk/django-influxdb-metrics
Python 1 637 network, learning, model, machine, pytorch, well, Machine learning applications, various tools asteroid-team/torch-audiomentations,
develop, data, implement, language and libraries by2101/warp-transducer, Ekultek/WhatWaf
4 494 interface, client, line, command, api, server, li- Command line interfaces and various tools aashutoshrathi/git-stalk-cli, dbcli/mycli,
brary, function, wrapper, provide dnouri/dstoolbox
7 352 source, open, program, file, format, analysis, like, Miscellaneous projects and projects with alisaifee/jira-cli, brunobord/the-black-hack,
tool, language, help meta-informative first paragraphs Egoistically/ALAuto
4 621 need, get, want, extension, make repository, add, Miscellaneous projects, projects with meta- ahoward/map, braintree/pg_ha_migrations, co-
rail, work, app informative first paragraphs piousfreetime/amalgalite
0 197 tool, test, command, line, run, code, manage, help, Various tools and libraries, command line floraison/fugit, hercules-team/augeas, joenor-
check, write programs ton/rubyretriever
Ruby 3 114 api, official, client, service, request, wrapper, API clients 3scale/3scale_ws_api_for_ruby,
build, implementation, framework, feature basecrm/basecrm-ruby, cburnette/boxr
1 100 rails, user, class, generate, model, like, object, also, Web application libraries and utilities amoeba-rb/amoeba, asenchi/scrolls, comma-
language, easy csv/comma
2 27 officially, following, support, project, library, Projects with meta-informative first para- collectiveidea/delayed_job_mongoid, dry-

please, activerecord, use, base, extension

graphs

rb/dry-auto_inject, dry-rb/dry-configurable

language. Apart from Rails, it seems Ruby has utility-related
uses in general. The largest topic having meta-informative
projects indicates Ruby’s topic modeling may have been
influenced by general words and usage comments more than
other languages. Ruby has typically been associated with
scripting and quickly created programs in the past, and this
was prevalent in the topics.

Overall, the topic modeling from the README files suc-
cessfully identified key insights into what projects are used
for with minimal overlap between the topics. This includes
insights into popular frameworks, tooling, usage patterns, and
applications for the different programming languages.

C. Is there a relationship between projects’ release cadence
category and topics? (RQ3)

We applied non-parametric tests for each topic of a lan-
guage. Our Kruskal-Wallis test resulted in average statistic
values of 3.927, 2.497, 3.264, and 2.727 for Go, Java, Python,
and Ruby projects, respectively. Meanwhile, the Fisher’s Exact
Test reported average odds ratios of 1.089, 0.879, 1.011,
and 0.826, in the same order. However, both tests using
topic distributions and cadence groups showed there was no
significant difference in topics among cadence groups for any
of the languages. Therefore, we did not conduct post hoc tests.

IV. CONCLUSION

In this study, we collected open-source GitHub projects
written in Go, Java, Python, and Ruby to study their average
release cadences. We classified projects into different release
cadence categories. The project release categories and topics
were then analyzed for any patterns. We found that most
of the projects in our dataset fall into the slow category.
Only 13% of the projects can be categorized as rapid. By
applying topic modeling, we identified the key applications
for the programming languages. However, we did not observe
significant release cadence differences among different topics.
Our findings indicate the release cadence may be impartial
to the software application and rather related to the desired
release schedule for the project.

Our study is subject to several limitations. There is no
consensus on release cadence intervals; these intervals are
based on classifications defined by existing work [1; 13; 32].
Project properties may have changed between 2021 and our
collection of READMESs and releases from WoC in December
2022. Projects’ current numbers of stars and latest commits
were automatically checked before collection to minimize this
issue. The replication package including the dataset, analyses,
and results is made publicly available [33].

ACKNOWLEDGEMENTS

Kilic and Baysal acknowledge the support of the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC), RGPIN-2021-03809.

REFERENCES

[1] B. Adams and S. Mclntosh, “Modern release engineering
in a nutshell — why researchers should care,” in 2016
IEEE 23rd Int. Conf. on Softw. Analysis, Evolution, and
Reengineering (SANER), vol. 5, 2016, pp. 78-90.

[2] G. Schuh and W. Eversheim, ‘“Release-engineering—an
approach to control rising system-complexity,” CIRP
Annals, vol. 53, no. 1, pp. 167-170, 2004.

[3] H. K. Wright and D. E. Perry, “Release engineering
practices and pitfalls,” in 2012 34th Int. Conf. on Softw.
Eng. (ICSE), 2012, pp. 1281-1284.

[4] A. Dyck, R. Penners, and H. Lichter, “Towards defini-
tions for release eng. and devops,” in 2015 IEEE/ACM
3rd Int. Workshop on Release Eng., 2015, pp. 3-3.

[5] K. Okumoto and A. L. Goel, “Optimum release time for
software systems based on reliability and cost criteria,”
Journal of Systems and Softw., vol. 1, pp. 315-318, 1979.

[6] S. Yamada and S. Osaki, “Cost-reliability optimal release
policies for softw. systems,” IEEE Transactions on Reli-
ability, vol. R-34, no. 5, pp. 422-424, 1985.

[7] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson Education, 2010.

[8] L. Chen, “Continuous delivery: Huge benefits, but chal-
lenges too,” IEEE Softw., vol. 32, no. 2, pp. 50-54, 2015.

[9] L. Bass, I. Weber, and L. Zhu, DevOps: A software
architect’s perspective. Addison-Wesley Professional,
2015.

[10] S. Nandgaonkar and V. Khatavkar, “CI-CD pipeline for

content releases,” in 2022 IEEE 3rd Global Conf. for

Advancement in Technol. (GCAT), 2022, pp. 1-4.

S. Shankland, “Rapid-release Firefox meets corporate

backlash,” 2011, https://www.cnet.com/culture/rapid-

release-firefox-meets-corporate-backlash/.

[12] ——, “Google ethos speeds Chrome

release cycle,” 2010, [Online]. Available:

https://www.cnet.com/culture/google-ethos-speeds-

up-chrome-release-cycle/.

S. D. Joshi and S. Chimalakonda, “Rapidrelease-a dataset

of projects and issues on GitHub with rapid releases,”

in 2019 IEEE/ACM 16th Int. Conf. on Mining Softw.

Repositories (MSR). 1EEE, 2019, pp. 587-591.

[14] A. Mockus, A. Nolte, and J. Herbsleb, “MSR Mining
Challenge: World of Code,” 2023.

[15] GitHub, “GitHub REST APL” Dec 2022.
Available: https://docs.github.com/en/rest/

[16] T. Preston-Werner, “Semantic versioning 2.0.0.” [Online].
Auvailable: https://semver.org/

[17] C. Commons, “Calendar versioning.” [Online]. Available:
https://calver.org/

[11]

up

[13]

[Online].

D. M. Blei, A. Y. Ng, and M. 1. Jordan, “Latent dirich-
let allocation,” Journal of Machine Learning research,
vol. 3, no. Jan, pp. 993-1022, 2003.

N. Orii, “Collaborative topic modeling for recommending
GitHub repositories,” Inf. Softw. Technol., vol. 83, no. 2,
pp- 110-121, 2012.

B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large
scale study of programming languages and code quality
in GitHub,” in Proceedings of the 22nd ACM SIGSOFT
Int. Symposium on Foundations of Softw. Eng., 2014, pp.
155-165.

M. M. Rahman and C. K. Roy, “An insight into the pull
requests of GitHub,” in Proceedings of the 11th Working
Conf. on Mining Softw. Repositories, 2014, pp. 364-367.
X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic
model for short texts,” in Proceedings of the 22nd Int.
Conf. on World Wide Web, 2013, pp. 1445-1456.

C. Sievert and K. Shirley, “LDAvis: A method for vi-
sualizing and interpreting topics,” in Proceedings of the
Workshop on Interactive Language Learning, Visualiza-
tion, and Interfaces, 2014, pp. 63-70.

Bitermplus documentation, “Benchmarks.” [On-
line]. Available: https://bitermplus.readthedocs.io/en/
latest/benchmarks.html

Spring, “spring-projects/spring-framework,” Dec 2022.
[Online]. Available: https://github.com/spring-projects/
spring-framework

Kubernetes, “Kubernetes/Kubernetes: Production-grade
container scheduling and management.” [Online].
Available: https://github.com/kubernetes/kubernetes

Go Community, “Release history - the Go programming
language,” Dec 2022. [Online]. Available: https://go.dev/
doc/devel/release

“Shopify invests in research for Ruby at scale,” May
2022. [Online]. Available: https://shopify.engineering/
shopify-ruby-at-scale-research-investment

“Build simple, secure, scalable systems with Go.”
[Online]. Available: https://go.dev/

Google, “What is Kubernetes? — Google Cloud.”

[Online]. Available: https://cloud.google.com/learn/
what-is-kubernetes

“Kotlin on Android. Now official: The Kotlin
blog” [Online]. Available: https://blog.jetbrains.com/

kotlin/2017/05/kotlin-on-android-now-official/

D. Chakroborti, S. S. Nath, K. A. Schneider, and C. K.
Roy, “Release conventions of open-source software: An
exploratory study,” Journal of Software: Evolution and
Process, p. €2499, 2022.

N. Bowness, O. Kilic, and O. Baysal, “Release
Cadence: Replication Package,” Feb 2023,
[Online]. Available: https://osf.io/v7jc4/?view_only=

6a88e7d3al7e4bal857c2389b9465b78.

