Studying the Change Histories of Stack Overflow
and GitHub Snippets

Saraj Singh Manes
School of Computer Science
Carleton University
Ottawa, Canada
saraj.manes @carleton.ca

Abstract—Stack Overflow is a popular Q&A forum for soft-
ware developers, providing a large number of copyable code
snippets. While GitHub is a collaborative development platform,
developers often reuse Stack Overflow code in their GitHub
projects. These snippets get revised or edited on each platform.
In this work, we study Stack Overflow posts and the code
snippets that are reused from these posts in GitHub projects.
We investigate and compare the change history of SO snippets
with the change history of GitHub snippets. We have applied a
stratified random sampling when mining 440,000 GitHub projects
to create a dataset representing the change history of the reused
snippets; this dataset contains 22,900 GitHub projects, 33,765
Stack Overflow references mapped to 4,634 Stack Overflow posts,
and a total of 73,322 commits.

We analyze the evolution patterns of snippets on each platform,
compare key trends and explore the co-change of these snippets.
Our results demonstrate that 76% of snippets evolve on Stack
Overflow, while only 22% of the reused code snippets evolve
in GitHub. Stack Overflow snippets undergo fewer and smaller
changes compared to their evolving counterparts on GitHub. The
evolution of snippets on both platforms is driven by the original
author of the content. Finally, we found that a small percentage
of snippets is co-changing across two platforms, while snippets in
GitHub and Stack Overflow evolve independently of one another.

Index Terms—Code snippets, change history, evolution; Stack
Overflow, GitHub, time series, co-change, code reuse

I. INTRODUCTION

Stack Overflow (SO) [1]] consists of a large corpus of
software development knowledge in the form of Question &
Answer (Q&A) posts and extensive commentary on posted
knowledge in the form of comments. This volume of informa-
tion on various subjects is available in the form of posts that
include text and code snippets. A code Snippet is a small block
of code in a particular choice of programming language. The
knowledge, represented by text and accompanied by optional
code snippets, serves as a description for a question or answer,
asked by a registered user of the Stack Overflow platform.
Stack Overflow consists of over 40 million such question-
answer posts and the number keeps on increasing daily.

This vast information attracts a broad audience of software
developers to become contributors or active consumers of
the present knowledge. According to the official statistics of
Stack Overflow [2], around 50 million developers visit Stack
Overflow monthly to learn and share their knowledge. This

Olga Baysal
School of Computer Science
Carleton University
Ottawa, Canada
olga.baysal @carleton.ca

large community of software experts with different levels of
experience, participate not only to generate knowledge in the
form of questions and answer posts but also help to validate
created knowledge with upvotesdand comments. SO users
continuously monitor newly created threads and help authors
of new posts in identifyingsweaknesses in their answers by
submitting their commentary, in the comment section of the
post.

Dependence on Stack Overflow is so severe that even new
learners such asfstudents prefer. to learn new programming
languages and frameworks from the forum instead of diving
into textbooks and learning via a traditional setting [3]. Ready-
to-use code snippets provide an easy way to find solutions for
daily/programming problems that developers around the world
face. Naturally, this knowledge collected in Stack Overflow is
transferred to other software artifacts. This work studies one
such migration of knowledge and its relation to a particular
type of software artifacts, i.e., open-source projects hosted
on GitHub. GitHub [4] is a git-based software repository
hosting service that allows developers to collaborate on their
project development. According to the SO licensing terms [J5]],
developers who use code from Stack Overflow are required to
attribute the code (e.g., by providing a URL as a comment
in their code). Providing a reference to the knowledge source
may also increase chances of pull request acceptance in an
open-source project. Thus, a large number of references to
Stack Overflow posts are found in GitHub projects [6].

While code reuse and knowledge sharing are effective
practices that SO facilitates, recent studies have shown that
code snippets can be toxic [7]] and lead to license violations [§]]
or migration of security vulnerabilities [9], [[10]. Therefore,
understanding how SO snippets are reused in software projects
is critical for mitigating the migration of bugs and vulnera-
bilities to software applications. First, we need to understand
how SO snippets evolve over time compared to other software
artifacts such as code. Initial analysis of the SO post evolution
demonstrates that it differs from the evolution of software
projects [6], [[11]. To the best of our knowledge, no study
has compared the SO snippet evolution with the evolution
of the reused code snippets in GitHub. We are interested in
investigating the patterns of SO and GH snippet evolution,
and the possibility of the co-evolution of these snippets. The



knowledge of snippet evolution may insight new research
directions and tool support. For example, a tool that tracks
SO snippet changes (and possibly checks for vulnerability
in snippets [[10]) can be integrated with CI tools to prevent
bugs/vulnerabilities from being deployed into production.

Our research focuses on studying the evolution of SO snip-
pets and their corresponding reused code snippets in GitHub
to support a better understanding of code or content reuse
across two collaborative development platforms. We define
SO snippet as the answer (accepted if available, otherwise
a highly voted one) that developers are referring to in their
projects’ code. SO snippets may include code snippet, pseudo
code, algorithms, or only discussions that developers refer to.
The aim of this work is to conduct a large-scale study on
investigating the change and co-change patterns of snippets
on Stack Overflow and GitHub. In this work, we address the
following research questions:

« RQ1: To what extent do snippets evolve in GitHub and
Stack Overflow?
This question is related to gaining insights into the extent
of the changes that snippets undergo on each platform.

RQ2: How and how often do snippets evolve in GitHub
and Stack Overflow?

The answer to this question would quantify the snippet
evolution in terms of the change size, type, and time.

« RQ3: Who is driving the evolution of snippets on both
platforms?
Results of this RQ would inform us about the ownership of
the content on both platforms and the role of the original
author in the evolution of snippets.

RQ4: To what extent do Stack Overflow snippets’ and
the reused code snippets co-change?

If co-change of snippets across two different platforms
happens, developers who reuse SO contentmneed to be aware
of the evolving SO content to be able to mitigate the effects
of inaccurate information migrations

The contributions of this research work are as follows:

1) Supporting better understanding of the change history of
snippets on two different collaborative platforms.

2) The change history dataseﬂ for the reused code snippets
in GitHub that can be further mined for conducting code
clone detection and analysis.

II. MOTIVATION AND EXAMPLE

Recently, Baltes et al. have released the SOTorrent
dataset [12]]. SOTorrent contains the version history of all
SO posts created from the official data dump. Baltes et al.
have performed an initial analysis [11] on Stack Overflow
posts investigating the frequency and distribution of edits with
respect to the creation time. One of the key results of their
study is the evidence of the change as 35.9% of posts were

Uhttps://github.com/manessaraj/GHCodeSnippetHistory.

TABLE I: Example: a Stack Overflow snippet, no changes.

R. | Content of a SO snippeﬂ
1 Here is some code you can use to query the work-
sheets from my copy of your spreadsheet.

#!/usr/bin/python

from gdata.spreadsheet.service import
SpreadsheetsService

key = ’0
Aip8K19b7wdidFBzZRGpEhoUIVPaEg2X0F2Y Wtw YKE

client = SpreadsheetsService ()
feed = client.GetWorksheetsFeed (key ,
visibility="public’, projection="
basic’)
for sheet in feed.entry:
print sheet. title.text

** Tips ** I find it really helpful when working with

t..

TABLE II: Example: the reused code snippet in the GitHub
project with two revisions (code is formatted to fit the table).

R. | Content of the reused code snippet in GH E[
1

def load_google_spreadsheet_mapping_file
(spreadsheet_key , worksheet_name=
None) :

”7”Some of this code is based on the
following websites . as well as
the“gdata. spreadsheet. text_db
module : “http :// stackoverflow .com/
a/12031835

# TODO\test if mo connection
gd_client = SpreadsheetsService ()
worksheetspfeed = gd_client.
GetWorksheetsFeed (spreadsheet_key
., visibility="public’, projection
=’basic’)
if len(worksheets_feed.entry) < 1:
raise RemoteMappingFileError("The Google Spreadsheet

with key ”%s” does not have any worksheets associated

with it.” % spreadsheet_key)

try:
worksheets_feed = gd_client.GetWorksheetsFeed(
spreadsheet_key, visibility="public’, projection="basic’)
except gaierror:
raise RemoteMappingFileError(”Could not establish
connection with server. Do you have an active Internet

connection?”’)

edited at least once. The work of Baltes et al. has inspired us to
study the evolution of snippets and whether it exhibits similar
trends on Stack Overflow and GitHub. In different research
fields, term “evolution” holds different meaning; in our work,
we define evolution as the change history of snippets and use
terms change and evolution interchangeably.

To demonstrate evidence of the evolution of snippets on
Stack Overflow and GitHub, we provide an example of code

Zhttps://stackoverflow.com/questions/7561148/
retrieve-data-from- public- google-spreadsheet-using- gdata-library?
answertab=active#tab-top

3https://github.com/biocore/qiime/blob/master/qiime/remote.py


https://github.com/manessaraj/GHCodeSnippetHistory
https://stackoverflow.com/questions/7561148/retrieve-data-from-public-google-spreadsheet-using-gdata-library?answertab=active#tab-top
https://stackoverflow.com/questions/7561148/retrieve-data-from-public-google-spreadsheet-using-gdata-library?answertab=active#tab-top
https://stackoverflow.com/questions/7561148/retrieve-data-from-public-google-spreadsheet-using-gdata-library?answertab=active#tab-top
https://github.com/biocore/qiime/blob/master/qiime/remote.py

reuse from Stack Overflow post to a real GitHub project.
Table [I| presents a Stack Overflow post with a code snippet.
This snippet has no changes after its creation in a Stack
Overflow answer post. Table [[I] illustrates how this SO snippet
was reused in the GitHub project. This reused code snippet
has been revised twice in the project’s history. For brevity, we
show only one revision of the reused snippet. We can also
see the original version of the SO snippet and the attribution
of the code (i.e., a URL to the SO post) in its comments.
This reference to the original source of information in SO has
allowed Baltes et al. [11] to build a dataset that links the SO
content history with the GH projects. Our work extends this
linkage with the change history of the reused code snippets
than are integrated in the GitHub projects.

III. RELATED WORK
A. Code Reuse

As a software system evolves, structural and behavioural
changes become more complex and time-consuming. As such,
code reuse from the previous version or third party vendors
has become an interesting problem [13]]. Code reuse is defined
as “the use of existing software or software knowledge to
construct new software” [14]. Researchers have developed
different techniques on how to reuse existing code. Wang
et al. [15]] have outlined general principles for leveraging an
existing code base while developing new features yet reducing
code redundancy.

Code reuse can happen not just from other projects’ code-
bases but also from online Q&A forums for developers
such as Stack Overflow. Several researchers have studied the
code reuse from Stack Overflow posts to GitHub projects
[14] [16] [17]. Lotter et al. [[14] have investigated the reuse of
SO content in popular open-source Java projects. The authors
have analyzed around 150K of Stack Overflow gposts and
detected their clones and reuse in 12 GitHub Java, projects.
They have also tried to determine clones from SO to GitHub
projects, as well as clones among the GitHub projects. Clone
results were 3.3% and 77.2%, respectively. While the former
represents the code reuse from Stack Overflow/to GitHub, the
latter indicates that the reuse of code between GitHub projects
is much more significant. While the results of their analysis
were substantial, the number of projects under consideration
was low.

Kamiya et al. [18] argue that code reuse leads to maintain-
ability issues that could introduce multiple points of failure if
reused code snippets are “buggy” and constitute to nearly half
of the entire code snippets in their dataset.

Code reuse becomes more challenging if code is taken
and reused from Stack Overflow due to potential code in-
compatibility and non-efficient solutions that can be tied to
the lack of developer understanding of the context. Further,
such snippet is well explained on the forum with a textual
description of logic/rationale, yet it is up to the developer to
figure out how to adapt this snippet, sometimes in different
programming language, to the existing project effectively
without introducing bugs. Ragkhitwetsagul et al. [19] argue

that more and more developers tend to refer to Stack Overflow,
while they do not understand certain aspects of code failure.
Such lack of understanding when adapting the content from
online forums affects the quality of the reused code.

Abdalkareem et al. [20] analyzed code reuse from Stack
Overflow in mobile applications and found that around 1.3 %
of the apps in their dataset were composed of code snippets
from Stack Overflow. Further, the code borrowed and adapted
from SO was introduced to the established apps later in their
lifetimes.

Empirically, there is little evidence on how information is
being adapted from Stack Overflow to GitHub. Yang et al. [21]
investigated the impact of one platform on the other. The
authors studied code snippets that exist on both platforms
and used cloning and measure of similarity as a measure of
equality of information present on both sides. The authors
focused their work on Python GitHub projects. They found
that 86% of code snippets on GitHub were reused copies of the
rest of the 14%, indicating a large amount of code duplication,
while such duplication on_Stack Overflow was only 1.3%.
Further, only 1% of code snippets were the same on both
platforms. These findings demonstrate that clone studies have
not been able to offer deeperiinsightséinto how code snippets
are adapted from"SO to GHyprojects.

Similar to Yang etoal. [21]], several researchers agreed that
clones lead to bug propagation and software maintenance
issues [18]], while ethers argued that clones are not harmful
at all; rather beneficial/[22], [23]]. Ragkhitwetsagul et al. [7]]
argued that there are two directions of snippet migration: 1)
snippet is cloned from a software project to a Q&A website
as an example; or 2) code is cloned from a Q&A website
to) a software project to perform some task. Yet, clones may
lead to license violations. The authors investigated the toxic
effects of such clones. Unlike other work on this topic, they
traced the origin of code snippets and performed quantitative
and qualitative analysis on code clone subjects.

B. Mining Stack Overflow and GitHub

Vasilescu et al. [24] were among the first researchers to
explore the interaction between Stack Overflow and GitHub
activities. The authors have linked Stack Overflow and GitHub
user accounts to explore development activities on both plat-
forms. Building on the work of Vasilescu et al. [24]], Badashian
et al. [25] investigated influence, involvement, and contribution
across the same two platforms, by correlating activities on
GitHub and Stack Overflow users. Lee and Lo [26] took
Badashian et al. [25]’s work one step further and analyzed
developer interests across the same two platforms, GitHub and
Stack Overflow. Further, Vasilescu et al. [27]] investigated how
mailing lists and Stack Exchange provide knowledge sharing
in open source software communities. Barua et al. [28]] studied
the process of sharing and gaining knowledge through being
part of and interacting with like-minded developers in open
source software communities.

Considering the popularity of GitHub and Stack Overflow
in the software engineering research community, Gousios et al.



[29] have published the GHTorrent project, which is a public
mirror dataset of all public projects available on GitHub. Many
researchers have since leveraged the GHTorrent dataset. Some
of the most interesting research efforts have been focused
on the analysis of drive-by-commits, test incentives and pull-
based development [30] [31]] [32]] [33]] [34] [35].

In 2018, Baltes et al. [[11] have created and released the
SOTorrent dataset based on the official Stack Overflow data
dump. SOTorrent stored version histories of Stack Overflow
data on two separate levels: entire posts and individual code
and text blocks. What contributed to the fast-growing popu-
larity of SOTorrent is the ability to link Stack Overflow posts
to GitHub repositories by detecting hyperlink references from
GitHub files to Stack Overflow posts. Treude and Wagner [36]]
used SOTorrent and studied the characteristics of GitHub and
Stack Overflow text corpora to predict good configurations for
LDA models built on such corpora.

Many researchers have mined Stack Overflow for various
purposes [37]-[49]. For example, Greco et al. [43] mined
SO along with IDE tools to predict developer behaviour and
developed a recommendation system for useful content on the
platform. Zou et al. [44] use topic modeling to analyze non-
functional requirements on SO and how they evolve. Like
many previous efforts, we leverage the rich data from Stack
Overflow and GitHub and study the change patterns of the
snippets.

IV. METHODOLOGY
A. Datasets

To understand the evolution of snippets on both platforms,
we mine two datasets, SOTorrent and GHTorrent.

SOTorrent [6] is an open dataset based on the official
Stack Overflow data dump. SOTorrent provides accessito the
version history of Stack Overflow content at the'level of
a whole post and an individual post block [11]. A post.in
SOTorrent is defined as one entity in the discussion thread
such as a question, comment, or answer to.the question. Thus;
a discussion thread on Stack Overflowis a set of posts in
SOTorrent. Further, a post is divided into blocks. A post'block
can be one of the two types: 1) code block or.2) text block.
A post block typically includes code snippets (code blocks)
and the textual content (text blocks) and is dependent on the
author’s formatting style of the post. Our definition of a SO
snippet may refer to a code block, a text block, or both.

The version history of a Stack Overflow post in SOTorrent
is defined in terms of the version history of blocks. Each edit,
whether an existing post block is edited, created or deleted,
creates a new version to the entire post and that particular post
block. Along with the version history of content, SOTorrent
links SO posts to external resources in two ways: 1) by ex-
tracting external URLs from post content, and (2) by providing
a table with links to SO posts found in the source code of
GitHub projects, called PostReferenceGH in SOTorrent’s
schema. This linkage of SO posts to GitHub projects is critical
for our research as it allows us to map SO posts to GitHub
projects and identify all SO snippets (code and text blocks)

that were reused in GitHub projects. Each code block that is
introduced with a reference to SO post to a GitHub project is
referred as a reused code snippet.

GHTorrent [31] is an online queryable mirror of the
GitHub’s events. These events include meta-information about
various interactions happening on the platform, for example,
commit to a project, the opening of a pull/issue request. While
GHTorrent is suitable for characterizing the projects that are
reusing Stack Overflow snippets, it is not sufficient for further
in-depth analysis for the following reason. GHTorrent consists
of the events from GitHub and metadata related to those events
(e.g., commit), but code changes (as code diffs) related to
those events are not present in the dataset. For the analysis
of the code snippet change history within the GitHub space,
events related to code snippets need to be identified using
code diff. Therefore, our main effort is related to extracting
the history of changes from the commit history of the code
snippets that are reused from Stack Overflow discussions.

To extract the change history of code snippets in GitHub,
we mine GitHub projects and create a new dataset called
GHCodeSnippetHistory. The majority,of the previous research
work on mining SO and GH data focused:0n specific sample of
the projects (e.g., Java, Python). Our aim is to collect a sample
dataset that is representative,of .the entire population of the
GitHub projects that refer to SO posts. We now describe the
approach of collecting airepresentative sample of the GitHub
projects_and how the change history of code snippets was
extracted.

B. Creating Dataset

To understand how the change history of code snippets is
extracted from the GitHub projects, we need to introduce two
main components: the concept of Code Context and the Code
Miner tool.

1) Code Context: Since we focus on the change history of
code, the unit of the analysis is commit. When we examine the
code that contains a reference to a Stack Overflow post, we
first need to identify the original commit which has introduced
that reference. We call it the origin commit. Since GitHub
stores the version history of all files, we can determine all
the commits that have touched any given file. Given we know
all the commits for a file and the changes they introduced, in
chronological order, we can identify the origin commit. The
earliest commit that has introduced SO reference is labelled as
the origin commit Cy. The changes introduced in the origin
commit become the code snippet of interest, and we would
like to understand how this code evolves overtime. Again, this
code snippet is not claimed to be a clone of the corresponding
SO snippet but is assumed to be the reused (i.e., adapted) code
snippet.

Suppose that a changeset Jy that is a part of the origin
commit Cjy, touches file f, that has a reference to SO post,
and transforms its revision 7, to 7o. First, we detect lines
L € 6y = 049 that have been added by dg in ro. These lines
attribute to the first version of the reused code snippet. To
locate them, we use git show origin-commit-hash command.



1./ Code

2./ Code

3. initPlayback{$elem, $wrapper, moveTemplate, opts.autoPlay, opts.still)
4. updateNavi($navi, 0);

5. updateButions($elem, 0, amount);

6. if(opts.resize) updateHeight($slideContainer, §islides, pos);

7. + disableSelection(Selem)

8. function moveTemplate(indexCb, animCh) {

9 .
10. - return function () {
- 1.

14, .
15. + function disableSelection($e) {
3 16. + 1 http flow.

hitp 700000how-to-disable-text-select
17.+  return $e.each(function() {

ing-jquery

18. + $(this).attr('unselectable’, 'on').css({
19, + "-moz-user-select'none’,
20, + "-webkit-user-select’:'none',

'user-select': none'
N.each(function() {
this.onselectstart = function() { return false; };

21+
22+
23+
24+ n
25+ W
26.+ )

27. +

Foo.py
r1, Origin Commit, Gy

1./ Code

2. [/ Code

3. initPlaybacki$elem, $wrapper, moveTemplate, opts.autoPlay, opts.still)
4. updateNavi($navi, 0);

5. updateButions($elem, 0, amount);

6. - disableSelection($elem)

7. + if{opts.resize) {

8 + disableSelection($elem)

9.+}

10. function moveTemplate{indexCh, animCb) {

13 .
14, function disableSelection($e) {
15, 1 hitp://stackaverfl T

‘to-disable-text-selecti

using-jquery

700000

—>» 16. return $e.eachifunction() {
17. $(this).attr('unselectable’, 'on’).css({
18. '-moz-user-selectnone’,
19, "-webkit-user-select’:'none',
20. 'user-select''none'
21 }).each(function() {
22 this.onselectstart = function() { return false; };
23 W

24 I

Foo.py

I; First revision Commit, C4

] codecontext []  Linesadged o

Fig. 1: Extracting code context from commits.

Lines Deleted

This subset d,9, defines a code context (A), 1.e., a set of lines
added to the origin commit A = J,¢.From, this point on, we
want to identify all commits that change the code lines of this
code context.

Now consider a revision r;"to f. Let/C; be the commit that
upgrades file from r;_; to r;. Let'9; be the changeset of C;,
and 6q; C 0; is set of deleted lines, and"d,; be added lines
in C;. If, a code line, L € d4;, i.e., the line is a part of the
deleted lines, and L € A, i.e., the line is a part of the code
context as well, then C; is modifying the current context and
is added to the dataset, otherwise, revision r; is not of interest
to us as it is not modifying the reused snippet. If C' modifies
the context, we update the context as A = (A\J4) U6, where
5; C 64, and is collection of all the lines in §,, that are in
close proximity to the already present lines in A, i.e., the code
context.

Figure [T] demonstrates this concept via an example from
a GitHub project (file is renamed for the sake of sim-
plicity). Once we extract all commits from the file his-

TABLE III: Deriving GitHub project information.

Element Example
HEADER https://raw.githubusercontent.com
USER/REPO-NAME RationalAsh/freeIMU/
BRANCH master
FILE-PATH debug/decode_float.py

tory, we identify Cp by looking for the commit whose
changeset has introduced a reference to SO post, ie.,
the following URL: http://stackoverflow.com/questions/27000/
how-to-disable-text-selection-using-jquery.

All lines added in this origin commit are shown in green
in Figure E] and form code context for next revision. Then,
we identify another commit C; that happens after Cj but
consists of the changeset, which touches some of the lines
added to the origin commit and is present in the code context.
This commit is considered to be a part of the code snippet’s
change history. The code context is now updated by removing
deleted lines and adding lines that were introduced next to the
existing lines (i.e., code context consists of green and blue
lines for next revision). We continue to walk through all the
commits of the file in its commit-graph. From these commits,
we select a subset of commits that modify the code context,
thus, capturing the change history of a code snippet.

2) Code Miner: Code Miner is a tool developed for cre-
ating the GHCodeSnippetHistory dataset. Code Miner op-
erates on seed data points that are a subset or the entire
table PostRe ferenceGH from SOTorrent. Essentially, Code
Miner clones a git project and then mines its file history using
the concept of code context.

The 'URLs to GitHub projects that reference SO posts
are stored in PostReferenceGH table and look simi-
lar to the following URL: https://raw.githubusercontent.com/
Rational Ash/freelMU/master/debug/decode_float.py. To de-
rive the project information from a URL, it can be split
into several elements as shown in Table For a given
project, i.e., USER/REPO-NAME, Code Miner aggregates all
SO references to avoid multiple project clones. Code Miner
then sends a GitHub’s REST API request to gather general
information on the project such as the repository size, number
of files, clone URL. If the request is successful, this means that
the project is public and can be cloned without infringement
of copyright. The URL of such a request has the following
signature: https://api.github.com/repos/USER/REPO-NAME,

After cloning the repository, Code Miner locates the file
with the reused code snippet in the codebase. This is the file
that has a URL to Stack Overflow post.

Code Miner runs git blame on the identified file and cre-
ates a blame file. Git blame produces the entire commit-
graph of a given source file. This commit-graph is then sorted
in chronological order. Using the concept of code context, a
subset of commits from the commit-graph is selected since
these commits contribute to the change history of the reused
code snippet. Code Miner extracts the entire metadata of the
commit along with the changes in the file of interest (i.e.,
changes to the reused snippet).


http://stackoverflow.com/questions/27000/how-to-disable-text-selection-using-jquery
http://stackoverflow.com/questions/27000/how-to-disable-text-selection-using-jquery
https://raw.githubusercontent.com/RationalAsh/freeIMU/master/debug/decode_float.py
https://raw.githubusercontent.com/RationalAsh/freeIMU/master/debug/decode_float.py
https://api.github.com/repos/USER/REPO-NAME

1e+054

| |
.
1e+03{ JI%

1e+014

Dataset

Number of References

]
| *  Original Data
t l ® Sampled Data
2
.

1 10 100 1000 10000

Number of Posts

Both X and Y are in log scales
X of sample data is shifted a bit to avoid overlap

Fig. 2: Distribution of a sampled dataset.

3) Project Sampling: In SOTorrent (version 2019/06/21),
PostReferenceGH table has a catalogue of 6.5 million
references used in public GitHub projects that refer to 150,000
Stack Overflow posts. These references span over 440,000
GitHub projects with 1,678 different file formats identified
from the file extensions. Mining 440,000 repositories and
creating a change history of all reused snippets is not feasible
due to time, computing, and storage constraints. Yet, we want
to preserve the generalization of our results derived from
the reduced (i.e., sampled) GitHub data, as well as reduce
sampling bias. Our sampling technique combines a stratified
random sampling [50] and the technique used by Treude et
al. [51]. We first sample SO posts and then the GitHub projects
in which these SO posts are attributed [52f]. To sample SO
posts, we follow Treude et al. [S1]. After sampling all posts
(i.e., postIDs), we applied a stratified random sampling [50]
to sample corresponding GitHub projects in which these posts
are referenced.

To be able to scale our approach, we set the desired dataset
size to 40,000 SO references. Figure [2|illustrates that our sam-
pled data is representative of the distributionsof,SO references
in GitHub. Our final dataset, called GHCodeSnippetHistory
dataset contains 22,900 projects, 33,765 SO references,mapped
to 4,634 SO posts, and total of 73,322, commits. The number
of projects is smaller than the ofiginal target in the sampling
algorithm, i.e., 40,000. The reason for this discrepancy is that
either the sampled project or the file containing a SO link was
deleted.

C. Time Series Analysis

Our RQ1 and RQ2 represent the macroscopic view of code
evolution and edit/revision activities on Stack Overflow and
GitHub. The microscopic view takes a temporal aspect into
account by considering code revisions on GitHub through
committing and, on Stack Overflow, through edit activities,
as time series. These microscopic views can answer the
dependency of code changes on both platforms. Thus, to study
the interaction between change activities on both platforms, we
follow the approach of Xuan et al. [53]]. According to their
approach, using the original time series of revision activities

Eo Ez

l l l

Stack Overflow Edit timeline

a)

iﬁn F‘ fz lRa
I ()
= Original GitHub Revision/Commit timeline
Ra R1 Rz Ra
E - ﬁ IS - 0 ©
- __,,-«-""ﬁine\inewilhllmedmerencein
» consecutive commits (original)
Po ‘,‘_‘Z:;‘;:”Hw' Re.._ Ra
= i - — (@)
Timeline with time difference in consecutive
lﬁo € iﬁ " lgz commits randomised g

+ (e)
Simulated GitHub Revision/Commit fimeline
Fig. 3: Generating a simulated time-series of GitHub commit
activities.

as the control group, several simulated activities are produced,
and then simulated seriesare compared with the original
control group, and the statistical difference is determined.

Consider the timeline of Stack Overflow edit activities of
a particular pair of apest and the timeline of its reused code
snippet on GitHub as shown in Figure [3] (a) and (b). Let A
and B be twoactivities we would like to compare (e.g., E
for edit of Stack,Overflow” post and R for revision of the
reused«€ode snippet)»For‘every event F; of A we measure the
impact latency ¢; as the difference between the earliest event
of R € B following F; (see Figure [3| (a)). The sequence €
characterises the relationship between A and B. Next, to study
whether the sequence of B events, i.e., revisions on GitHub
(Ry), for a particular edit on Stack Overflow E; could have
occurred by chance, we create m random permutations of B
events (B, ..., By). While reshuffling, we make sure that the
time difference or “idling period” between two consecutive
revisions (R;, R;11) of the reused code snippets remains the
same, while the order of the “idling periods” is randomised
(as shown in Figure [3] (d)). Let €1, ..., €, be series of impact
latencies corresponding to Bi,...,B,, (e.g., as shown in

Figure [3] (¢)).

Finally, we aggregate all the impact sequences such as € for
all such pairs in the dataset into £5. Then, we compare Ejp
with each one of EB EB2 _EBm_ where Eg is referred as
control sample while others, E5 i € [1,10] as simulated sam-
ple. Finally we compare each simulated sample with control
sample using t-tests. The t-test [54]] is a parametric statistic that
helps to determine how significant is the difference between
two groups. The results should be as follows:

1) If A and B are independent from each other, EPB will be
statistically indistinguishable from its simulated counter-
parts.

2) If A and B are correlated in some manner, EB will be
statistically longer or shorter than its simulated counter-
parts, indicating acceleration and de-acceleration.



We apply this approach for answering our RQ4 related to
the dependence of the GitHub revisions on the Stack Overflow
post edits.

V. RESULTS

We now present the results of our analysis and provide
answers to the research questions.

A. RQI: To what extent do snippets evolve on GitHub and
Stack Overflow?

To investigate to what extent snippets evolve, we concen-
trated on the number of changes per snippet on both platforms,
i.e., Stack Overflow and GitHub. Each change in a reused code
snippet in GitHub is referred to as a revision or as an edit
for Stack Overflow snippets. Table reports the number of
revisions for GH code snippets and number of edits for SO
snippets. By looking at the column “All GH snippets”, we can
observe that the majority of reused code snippets in GitHub
do not get revised over time. We decided to separate GitHub
code snippets into two categories:

1) Unchanged GH code snippets: Code snippets that are

never updated after being introduced to a GH project.

2) Changed GH code snippets: Code snippets that are re-

vised at least once after their inception.

Unchanged code snippets are code snippets that have only
one commit in the project’s history, the commit in which they
were introduced to the project. We found that these unchanged
code snippets represent 77.98% (26,330 in total) of the total
reused code snippets. On the contrary, on Stack Overflow, only
23.7% of snippets undergo no edits after their creation.

Figure {4| (left) shows the distribution of changed GitHub
code snippets (with 5% of outliers being removed), while
(right) shows the distribution of edits in Stack Overflow snip-
pets. Combining these distribution trends with the descriptive
statistics in Table we can say that SO snippets. undergo
slightly fewer edits than the adapted code snippets that do
change in GitHub (mean values are 4.61 and 6:54 for SO»and
GH, respectively).

Answer to RQ1: 22% of the reused code snippets evolve
in GitHub, while 76.3% of snippets evolveson Stack
Overflow. On average, Stack Qverflow snippets undergo
fewer changes compared to their‘evolving counter parts
on GitHub.

B. RQ2: How and how often do snippets evolve in GitHub
and Stack Overflow?

To study how snippets evolve, we consider the change type
and size of each SO and reused GH snippets’ revision/edit.
Table [V] and Table report summaries of multiple revi-
sions for Stack Overflow snippets and GitHub code snippets
respectively, showing the median time difference between

TABLE IV: Changes in GH code snippets and SO snippets.

Metric | All GH snippets | Changed GH snippets | SO snippets
Median 1.00 3.00 3.00
Mean 2.20 6.54 4.61

3000 500

575
2900
550
2800 525

500

2700
475
450
2600
425

2500 400
1200 300

1000 50

800

=
H

600

# SO Posts

400

# re-used snippets

200

8

5 10 15 20 5 30 5 L 5 10 15 20 25 30 35 A
# of Git revisions # SO Post edits

Fig. 4: Revisions in changed code, snippets on GitHub (left)

and edits in Stack Overflow snippets (right).

revisions and the’ change.size.,\In these tables, snippets are
categorized by their edit/revision number as represented by
the column“Edt#” or “Rev.#” for SO and GH, respectively.
The 0 edit/revision category means the creation/introduction
of the snippet on the corresponding platform. Any further
changes after 7*" reyision are merged in 7+ category. We also
report the change type that is specific to each platform. For
GitHub, the change type is either ADD, DELETE, MODIFY,
or RENAME depending on whether the code lines were added,
deleted or modified, or file being renamed for the reused
code snippet in the corresponding revision. Similarly, for Stack
Oyerflow, the change type is either TEXT or CODE, indicating
whether the text or code block of the post was revised during
the edit. Column “Major Change Type” indicates the change
type of the majority of snippets for a particular revision, while
“Second Major Change Type” denotes the runner up change
type for all snippets. From Table we can observe that
the majority of the edits to Stack Overflow content have the
change size of around 2 lines for the text block and around 1
line for the code block. The major change type for SO snippets
is TEXT indicating that the description of the post is more
prone to changes. Table [VI| shows that the vast majority of the
reused code snippets are of MODIFIED type over multiple
revision, with the change size of 24 LOCs, on average.

To investigate how often snippets are changed on each plat-
form, we look at the time difference between two consecutive
revisions/edits. To show the timeline range over which the
consecutive revisions can happen, we report the minimum (in
hours, H) and maximum time (in years, Y) difference along
with the median time (in days, D) in Table [V] and Table
We observe that the time interval is shorter between revisions
of the reused code snippets (median time is between 4.3 and
11 days), while the time interval is longer for the SO snippet



TABLE V: Edit characteristics for Stack Overflow snippets. TABLE VI: Revision characteristics for GitHub code snippets.

Edt] Major Change 2nd Major Time (in H,D,Y) Change Size Rev) Major Change 2nd Major Time (in H,D,Y) Change Size
# Type Change Type Min Max | Mdn | Text | Code # Type Change Type Min | Max | Mdn [LOC]
0 TEXT&CODE TEXT - - - 3 8 0 ADD MODIFY - - — 930
1 TEXT TEXT&CODE | <1H | 98Y | 35D | 2 2 I MODIFY DELETE <1H | 5Y | 1D 30
2 TEXT CODE <10 | 10Y | 143D | 2 I 2 MODIFY RENAME <10 | 47Y | 10D 21
3 TEXT TEXT&CODE | <1H | 9.0Y | 149D | 2 I 3 MODIFY DELETE <10 | 58Y | 78D 23
4 TEXT CODE < 1H 10.3Y 111D 2 1 4 MODIFY DELETE < 1H 5.6Y 6.7D 23
5 TEXT TEXT&CODE | <1H | 83Y | 144D | 2 T 5 MODIFY DELETE <10 | 43Y | 6D 23
6 TEXT CODE <1H | 73Y | 110D | 2 I 6 MODIFY RENAME <1H | 37Y | 69D 26
T+ TEXT CODE <IH | 66Y | 62D | 1 2 7+ MODIFY DELETE <1H | 49Y | 43D 22
] can become the product of collective ownership as multiple
//\‘¢ | authors change the content over time. To understand who
, e . o .
P [ is contributing to the content changes, i.e., posts on Stack
— . .
L - - Overflow and the code snippets that are reused on GitHub, we
23 : classify authors into original vs. non-original. Original authors
H A > B g
o 7 .
3 \/\/7- are the users who created the content in the first place, e.g.,
§s — ™ created a post on Stack Overflow or reused a SO snippet in
=] ’_/
6 = A i>®\ a GitHub project. In contrast, non-original author is anyone
. =TT 1 but the original author.
: S EE |5 Figure [6] (left) shows the percentage of SO snippet edits
15 S s |6 S .. .. . . .
e - : pe o - by original vs. non-original author, while Figure [6] (right)

10f
Time difference (In log hours)

Fig. 5: Density plot of revision distributions over time on GH
(in blue) and SO (in orange).

edits (median time is between 3.5 and 149 days). Also, the
results from these tables suggest that the evolution timeline of
Stack Overflow snippets is longer compared to the timeline of
the GitHub code snippets.

Figure [5] shows the distribution of time difference between
subsequent revisions on both platforms, for all snippets. These
distributions are again classified by their revision numbers. For
example, in Figure 274 revision, represented by number
2 on the y-axis and its corresponding density curve, shows
the distribution of the time difference between secofid and
first revisions for all snippets. As shown in Figure [ the
revision/edit time difference distribution follows a unique
pattern for each platform across multiple revisions, 1.e., the
distribution curves representing each of the seven revisions
on GitHub (in blue) are of a similar pattern. However, these
curve patterns are different for each platforms. We observe
that GitHub distribution curves resemble bimodal distributions,
however, further analysis is neéded to confirm this.

Answer to RQ2: On average, Stack Overflow snippets
undergo minor changes of 2 lines to the. textual description
and 1 line to the code block of the answer, while the
change size of the GitHub code snippets is 24 LOCs. The
major change type is TEXT and MODIFIED for Stack
Overflow snippets and reused code snippets, respectively.
Overall, the evolution timeline of the SO snippets is longer

compared to the timeline of the reused code snippets.

C. RQ3: Who is driving the evolution of snippets on both
platforms?

GitHub and Stack Overflow are collaborative platforms, i.e.,
a lot of social interaction and discussion happens around code
and software development. One of the dominant trends, in
particular on Stack Overflow, is that posts and code snippets

shows the portion of commits on the reused code snippets for
a particular revision by .original vs. non-original author. We
notice that the original authors (in blue)‘take up most of the
ownership of the content as they remain the primary drivers of
the content (post/or code) maintenance on both Stack Overflow
and GitHub platforms.

Answer to RQ3: The author of the original snippet
remains the leading»contributor to its maintenance and
evolution_on both platforms.

Dy RO4: To what extent do Stack Overflow snippets and the
reused code snippets co-change?

While our answers to previous questions provide evidence
that snippets evolve on both platforms, next, we wanted to
explore to what extent the revisions and edits to these snippets
might be happening in parallel, i.e., co-change. Figure[7] shows
the co-change of snippets on both platforms, as a function
of time. The x-axis timeline of revisions/edits represents the
number of days since 2008-08-05 till 2019-09-01. With time,
the amount of posts created on Stack Overflow is growing,
similarly the number of snippets that are reused from SO
and integrated to GitHub projects is increasing. Further, we
observe a time lag between the Stack Overflow curve and
the GitHub curve representing the delay between the creation
of SO snippets and their reuse in GitHub. Overall, it takes
a while (at least 1,000 days) for snippets to be reused in
GitHub projects. In time, SO content becomes more stable
as developers start reusing it in their GitHub projects. We
also notice that the majority of the reused code snippets do
not change. Eventually, the number of posts created on SO
becomes stable (i.e., the posts in our dataset), and their content
also gets more stable as GitHub projects start reusing the
content from SO. We can observe, yet again, that the majority
of adapted code snippets do not evolve.

Looking at the change history of all reused code snippets
and their SO counterparts as time-series data, as shown in



== Original Author
w== Non-Original Author

1200

Number of Posts

200

0 |H‘|||||I||IIIII“IIIIIIIlll---..-
5 10 5 30 35 a0

15 20 2
Edit Number

== Original Autnor
= Non-Original Author

B
2

2000

Number of Code Snippets

o L LLLREE T RRR R R g
10 20 30 40 50 60

Revision Number

Fig. 6: Contributors on Stack Overflow (left) and GitHub (right).

]
8

Stable Snippets
[ Evolving Snippets
i Co-Evolving Snippets

§ 8 8§

# GH code snippets
2
g

Stable Posts
[ Evolving Posts
mm Co-Evolving Posts

# SO Posts
]

)

2000 3000

Time in number of days

° 1000

Fig. 7: Co-change timelines of SOfsnippets and reused code
snippets.

Figure [7, we observe different peaks at different timestamps.
For GitHub, the peak of the evolving snippets (green curve)
is at 41.2% of the height of the stable snippets (yellow) curve
at that time, denoting that at most 41.2% of the reused code
snippets were changed at any given time. Similarly, for Stack
Overflow, the peak of the evolving snippets (green curve) is
at 53.3% of the height of the yellow curve, implying that only
about half of the referred snippets were evolving at that any
given time. Finally, blue curves on the graphs of both platforms
indicate the percentage of snippet pairs that co-change at a
particular timestamp. Since the scales of the two graphs are
different, the height of the peaks seems different. However, the
blue curve is the same on both graphs. The highest peak of
the blue curve is at 10% of the reused snippets. This means

that at most 10% of the reused\code snippets and their SO
counterparts were evolving together across two platforms at
any moment of time.

Based on these results, ‘we can say that the reused code
snippets evolve while their.counterpart posts evolve on Stack
Overflow because their timelines overlap. But it is not clear
whether the‘changes to Stack Overflow content are triggering
revisions of the reused code snippets. To determine whether
thereds a dependency, between Stack Overflow evolution and
GitHub evolution, 1.e., there is a relation between the edit
activities<on Stack Overflow and the commit activities on
GitHub, we follow the approach proposed by Xuan et al. [53]]
and Vasilescu et al. [24] as described in Section [[V-C] In
this approach, we compute impact latencies € for each pair
of SO post and reused code snippet. This latency denotes the
time difference between edit activity on Stack Overflow and
revision activity on GitHub.

Further, following Vasilescu et al. [24]), we split computed
impact latencies ¢;’s of each pair into quarters by the num-
ber of GitHub revisions. Our t-test results are presented in
Table m for two simulated samples. Based on these results,
we conclude that the reused code snippets in GitHub evolve
independently of their corresponding Stack Overflow snippets.
This means that Stack Overflow edits do not impact the
changes of the reused code snippets in GitHub and vice versa.

Answer to RQ4: While having overlapping evolution
timelines, the reused code snippets and their correspond-
ing SO snippets evolve independently of one another.

TABLE VII: T-test results for GitHub revisions and Stack
Overflow edits.

Sample Q1 Q2 Q3 Q4

W P W P W P w P
Control 779.94 - 602.01 - 490.40 — 379.43 —
Simulated 1 779.94 | 0.99 | 602.09 | 0.99 | 496.67 | 0.71 | 381.34 | 0.88
Simulated 2 | 779.94 | 0.99 | 600.98 | 0.96 | 501.13 | 0.54 | 379.80 | 0.97




VI. DISCUSSION
A. Findings

The goal of this work was to better understand how online
snippets evolve in Stack Overflow compared to how the reused
code snippets evolve in GitHub. We tried to identify the
evolution patterns on each platform and determine whether
co-change of snippets happens across two platforms. We
found that snippets evolve on both platforms, i.e., GitHub and
Stack Overflow, simultaneously and independently. The pace
of evolution is different on both platforms, while initial edits
and revisions on both platforms happen quite fast.

While we found that the evolution of snippets happens on
both platforms, we have not investigated why snippets undergo
multiple corrections either on Stack Overflow or GitHub.
Future research should focus on studying the factors that drive
these changes.

B. Implications

Maturity of SO content. Combining the evolution history
and the usage history of a Stack Overflow discussion, pre-
dictive models can be developed for assessing the quality of
the SO content. Adding “maturity” score to posts in Stack
Overflow can help developers determine whether code is ready
(or not) to be used and adapted to their own projects.

A dataset for code clone detection. We mined GitHub
projects to create a code history that stores code diffs along
with the related metadata. Code, collected as a part of data
mining, is mostly unexplored, yet it provides ready-to-be-used
dataset for clone detection across a large number of projects.

Tool development for tracking SO changes. Our results
suggest that evolution on Stack Overflow happens at a slower
pace compared to GitHub. Manual tracking of SO changes
is infeasible. Therefore, we recommend the development of
automated solutions to help developers keep track of the
snippets they use. For example, an application torbe integrated
with CI (e.g., CircleCI) or code coverage (e.g., Sonar).tools
can query the SOTorrent-like database to check for changes,in
the SO snippets that are used in the codebase. If a change is
found, a warning can be issued for a pull request to keep the
author informed of the change. Such tools can, alleviate the
problem of bugs migrating from SO to GH projects.

C. Threats to Validity

Our study is subject to limitations and threats to validity.

Limitations of Code Miner. To recreate a change history
of the reused code snippets, Code Miner relies on the git
history of the project. Often the commit history is modified
via git —--rebase option. In such scenarios, it is challeng-
ing to recreate original commit history. Such altered history
significantly reduces the number of commits per code snippet
while increasing the number of changed lines in the merged
commit. Also, if code from third party libraries is borrowed
in the project, and the SO reference is present in such code,
Code Miner is not able to recreate the history of such code.

Sampling. While our sampling technique aims at reducing
sampling and selection bias, we had to exclude one project

named cdnjs from our dataset due to its size (100GB) and
technical issues (disk space and computational resources) we
faced during the project cloning step.

SO snippet definition. Our definition of the SO snippet
is rather broad and refers to answers that may include code
examples, pseudo code, design, algorithms, or be text-only.
“Origin commit” defines whether code or information was
adapted from SO by including an attribution [52] (i.e., URL
to a SO post) to source code. We do not check whether the
code was copied or not. By applying code clone detection
techniques one would be able to provide better insights on
how snippets are reused.

SO reference mapping. Our analysis is based on the com-
parison of each GitHub code snippet with its corresponding
SO snippet. If a SO reference points to a SO question post, we
have mapped the reference to the accepted answer or highly
voted answer (if no accepted answer is available). According
to Stack Overflow, the acceptedianswer provides the best
solution.

Code ownership. When<analyzing revisions of the reused
code snippets, we found some revisions not having same
“Committer ID” and “Author ID”. The author is the person
who wrote the code, while the committer is the person who
committed codefon behalf of the author [55]. In this work,
while identifying contributors, we focused on the commit
authors only, excluding the committers from the analysis.

Lack-of qualitative analysis. GH snippets are much larger
thanforiginal SO snippets; we observed that initial commits
may includeva merge of a large number of commits or
even history rebases. In-depth qualitative studies of commits
together with.code clone detection/analysis would be needed to
better understand how SO content is reused by developers. The
results on GitHub code snippet evolution should be interpreted
as ashigher-bound, i.e., the real “reused” code is likely to be
smaller indicating that the GitHub code evolution can be even
less frequent than the results presented in the paper.

VII. CONCLUSION

In this work, we investigated the change histories of snippets
on Stack Overflow and GitHub. We studied SO snippets that
have been reused in GitHub projects by mapping data sources,
SOTorrent and GHTorrent, and building a new dataset that
provides a mapping of these data to the revision history of
the reused code snippets along with code diffs. Our results
demonstrate that 76.3% of snippets evolve on Stack Overflow,
while only 22% of the reused code snippets evolve in GitHub.
However, Stack Overflow snippets undergo fewer and minor
changes compared to their evolving counterparts on GitHub.
We analyzed the ownership of the content on both platforms
and found that the creator of the content plays a critical role
in the evolution of snippets. When exploring the possibility of
code co-change, we found that the percentage of co-changing
snippets is small on the overall timeline. Moreover, snippets
evolve independently on each platforms (e.g., Stack Overflow
edits have no impact on GitHub revisions).



[1]
[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Stack Overflow, “Stack Overflow,” https://stackoverflow.com/, 2020,
[Online; accessed 05-January-2020].

——, “Stack Overflow Insights,” https:/insights.stackoverflow.com/,
2019-12, [Online; accessed 05-January-2020].

S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming QA in Stack Overflow,” in
Proc. of the International Conference on Software Maintenance, 2012,
pp. 25-34.

GitHub, “GitHub,” https://github.com/, 2020, [Online; accessed 05-
January-2020].

Stack Exchange, “A New Code License: The MIT, this time with At-
tribution Required,” https://meta.stackexchange.com/questions/272956/
a-new-code- license-the-mit-this-time- with-attribution-required ?cb=1,
2020, [Online; accessed 05-January-2020].

S. Baltes, C. Treude, and S. Diehl, “SOTorrent: Studying the origin,
evolution, and usage of stack overflow code snippets,” in Proc. of the
International Conference on Mining Software Repositories, 2019, pp.
191-194.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, pp. 1-1, 2019.

L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow: A code
laundering platform?” in International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017, pp. 283-293.

F. Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow Considered Harmful? The Impact of Copy
Paste on Android Application Security,” in IEEE Symposium on Security
and Privacy (SP), 2017, pp. 121-136.

M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. Karami
Motlagh, “An Empirical Study of C++ Vulnerabilities in Crowd-Sourced
Code Examples,” IEEE Transactions on Software Engineering, pp. 1-1,
2020.

S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: Reconstruct-
ing and analyzing the evolution of stack overflow posts,” in Proceedings
of the 15th International Conference on Mining Software Repositories.
ACM, 2018, pp. 319-330.

Sebastian Baltes, “SOTorrent Dataset,” |https://empirical-software.
engineering/projects/sotorrent/, 2019-12, [Online; accessed 05-January=<
2020].

H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Measuring code
reuse in android apps,” in Proc. of the Annual Conference on' Privacy,
Security and Trust, 2016, pp. 187-195.

A. Lotter, S. A. Licorish, B. T. R. Savarimuthu, and S. Meldrum, “Code
Reuse in Stack Overflow and Popular Open Source Java Projects,” in
Proc. of the Australasian Software Engineering Conference, 2018, pp.
141-150.

Z. Wang, M. Zhou, and H. Mei, “Towards an Empirical Reuse Approach
for the Software Evolution: A Case Study,”in Proc. of the-nternational
Conference on Quality Software, 2010, pp. 282-287.

S. Baltes, R. Kiefer, and S. Diehl, “Attribution Required: Stack Overflow
Code Snippets in GitHub Projects,” in International Conference on
Software Engineering Companion (ICSE-C), May 2017, pp. 161-163.
D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack Overflow in GitHub:
Any Snippets There?” in Proc. of the International Conference on
Mining Software Repositories, 2017, pp. 280=290.

T. Kamiya, S. Kusumoto, and K. Inoue, #CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

J. Krinke, “A Study of Consistent and Inconsistent Changes to Code
Clones,” in Proc. of the Working Conference on Reverse Engineering,
2007, pp. 170-178.

R. Abdalkareem, E. Shihab, and J. Rilling, “On Code Reuse from Stack
Overflow,” Inf. Softw. Technol., vol. 88, no. C, pp. 148-158, Aug. 2017.
D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack Overflow in GitHub:
Any Snippets There?” in Proc. of the International Conference on
Mining Software Repositories, 2017, pp. 280-290.

V. Saini, H. Sajnani, and C. Lopes, “Comparing Quality Metrics for
Cloned and Non Cloned Java Methods: A Large Scale Empirical Study,”
in Proc. of the International Conference on Software Maintenance and
Evolution (ICSME), 2016, pp. 256-266.

(23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

(31]

[32]

(33]

[34]

(351

(371

(38]

[39]

[40]

[41]

[42]

C. Kapser and M. W. Godfrey, “’Cloning Considered Harmful” Con-
sidered Harmful,” in Proc. of the Working Conference on Reverse
Engineering, 2006, pp. 19-28.

B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub:
Associations between Software Development and Crowdsourced Knowl-
edge.” in Proc. of the International Conference on Social Computing,
2013, pp. 188-195.

A. S. Badashian, A. Esteki, A. Gholipour, A. Hindle, and E. Stroulia,
“Involvement, contribution and influence in github and stack overflow,”
in Proceedings of 24th Annual International Conference on Computer
Science and Software Engineering. 1BM Corp., 2014, pp. 19-33.

R. K.-W. Lee and D. Lo, “Github and stack overflow: Analyzing
developer interests across multiple social collaborative platforms,” in
International Conference on Social Informatics.  Springer, 2017, pp.
245-256.

B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social
q&a sites are changing knowledge sharing in open source software
communities,” in Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, 2014, pp. 342—
354.

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3,.pp. 619-654, 2014.

G. Gousios, “The ghtorent dataset.and tool suite,” in Proceedings of the
10th working conference on mining software repositories. 1EEE Press,
2013, pp. 233-236.

S. S. Manes and O. Baysal, ‘How Often and What Stack Overflow
Posts Do Developers Reference in Their GitHub Projects?” in Proc. of
the International Conference,on Mining Software Repositories, 2019,
pp. 235-239.

G. Gousios, “The GHTorrent-Dataset and Tool Suite,” in Proc. of the
Working Conferenceson Mining Software Repositories, 2013, pp. 233—
236.

W. Muylaert and C. De Roover, “Prevalence of Botched Code Inte-
grations,” in Proc.of the International Conference on Mining Software
Repositories, 2017, pp.503-506.

M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
Travis/CI and_GitHub for Full-Stack Research on Continuous Inte-
gration,” in Proc. of the International Conference on Mining Software
Repositories, 2017, pp. 447-450.

K. Werder and S. Brinkkemper, “MEME - Toward a Method for EMo-
tions Extraction from GitHub,” in Proc. of the International Workshop
on Emotion Awareness in Software Engineering, 2018, pp. 20-24.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92-101.

C. Treude and M. Wagner, “Predicting good configurations for github
and stack overflow topic models,” in Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories. 1EEE Press, 2019,
pp. 84-95.

J. Liao, G. Yang, D. Kavaler, V. Filkov, and P. Devanbu, “Status, identity,
and language: A study of issue discussions in github,” PloS one, vol. 14,
no. 6, p. €0215059, 2019.

G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Categoriz-
ing the content of github readme files,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1296-1327, 2019.

A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and
K. Ali, “What do developers know about machine learning: a study of ml
discussions on stackoverflow,” in Proceedings of the 16th International
Conference on Mining Software Repositories. 1EEE Press, 2019, pp.
260-264.

P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A. Kraft,
“Exploratory study of slack q&a chats as a mining source for software
engineering tools,” in Proceedings of the 16th International Conference
on Mining Software Repositories. 1EEE Press, 2019, pp. 490-501.

S. A. Chowdhury and A. Hindle, “Mining stackoverflow to filter out off-
topic irc discussion,” in Proceedings of the 12th Working Conference on
Mining Software Repositories. 1EEE Press, 2015, pp. 422-425.

A. Arwan, S. Rochimah, and R. J. Akbar, “Source code retrieval on
stackoverflow using 1da,” in 2015 3rd International Conference on
Information and Communication Technology (ICoICT). 1EEE, 2015,
pp. 295-299.


https://stackoverflow.com/
https://insights.stackoverflow.com/
https://github.com/
https://meta.stackexchange.com/questions/272956/a-new-code-license-the-mit-this-time-with-attribution-required?cb=1
https://meta.stackexchange.com/questions/272956/a-new-code-license-the-mit-this-time-with-attribution-required?cb=1
https://empirical-software.engineering/projects/sotorrent/
https://empirical-software.engineering/projects/sotorrent/

[43]

[44]

[45]

[46]

(471

[48]

C. Greco, T. Haden, and K. Damevski, “StackInTheFlow: Behavior-
Driven Recommendation System for Stack Overflow Posts,” in Proc. of
the International Conference on Software Engineering, 2018, pp. 5-8.
J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “Which
Non-functional Requirements Do Developers Focus On? An Empirical
Study on Stack Overflow Using Topic Analysis,” in Proc. of the Working
Conference on Mining Software Repositories, 2015, pp. 446—449.

M. Linares-Vasquez, B. Dit, and D. Poshyvanyk, “An Exploratory
Analysis of Mobile Development Issues Using Stack Overflow,” in Proc.
of the Working Conference on Mining Software Repositories, 2013, pp.
93-96.

M. M. Rahman and C. K. Roy, “An Insight into the Unresolved
Questions at Stack Overflow,” in Proc. of the Working Conference on
Mining Software Repositories, 2015, pp. 426-429.

A. Soni and S. Nadi, “Analyzing Comment-Induced Updates on Stack
Overflow,” in Proc. of the International Conference on Mining Software
Repositories, 2019, pp. 220-224.

J. Shao and Y. Sun, “A recommendation service for programming study
based on stack overflow,” in Proc. of the IEEE World Congress on
Services, 2018, pp. 13-14.

[49]

[50]
[51]

[52]

(53]

[54]

[55]

H. Yin, Z. Sun, Y. Sun, and W. Jiao, “A Question-Driven Source Code
Recommendation Service Based on Stack Overflow,” in Proc. of the
World Congress on Services, vol. 2642-939X, 2019, pp. 358-359.

S. Thompson, Sampling, ser. CourseSmart. Wiley, 2012.

C. Treude and M. Wagner, “Predicting Good Configurations for GitHub
and Stack Overflow Topic Models,” in Proc. of the International
Conference on Mining Software Repositories, 2019, pp. 84-95.

S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Softw. Engg., vol. 24, no. 3, p.
1259-1295, Jun. 2019.

Q. Xuan, M. Gharehyazie, P. T. Devanbu, and V. Filkov, “Measuring
the Effect of Social Communications on Individual Working Rhythms:
A Case Study of Open Source Software,” in Proc. of the International
Conference on Social Informatics, 2012, pp. 78-85.

D. Kalpic¢, N. Hlupié, and M. Lovrié, Student’s t-Tests. Springer Berlin
Heidelberg, 2011, pp. 1559-1563.

GitHub Documentation, “Git Basics - Viewing
the Commit History,” https://git-scm.com/book/en/v2/
Git-Basics- Viewing-the-Commit- History, 2020-03-09, [Online;

accessed 28-October-2018].


https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

	Introduction
	Motivation and Example
	Related Work
	Code Reuse
	Mining Stack Overflow and GitHub

	Methodology
	Datasets
	Creating Dataset
	Code Context
	Code Miner
	Project Sampling

	Time Series Analysis

	Results
	RQ1: To what extent do snippets evolve on GitHub and Stack Overflow?
	RQ2: How and how often do snippets evolve in GitHub and Stack Overflow?
	RQ3: Who is driving the evolution of snippets on both platforms?
	RQ4: To what extent do Stack Overflow snippets and the reused code snippets co-change?

	Discussion
	Findings
	Implications
	Threats to Validity

	Conclusion
	References

