
PR
EP

RIN
T

Health is Wealth: Evaluating the Health of
the Bitcoin Ecosystem in GitHub

Khadija Osman
School of Computer Science

Carleton University
Ottawa, Canada

khadija.osman@carleton.ca

Olga Baysal
School of Computer Science

Carleton University
Ottawa, Canada

olga.baysal@carleton.ca

Abstract—Bitcoin is a virtual and decentralized cryptocurrency
that operates in a peer-to-peer network providing a private
payment mechanism. It is a multi-billion dollar cryptocurrency,
and hundreds of other cryptocurrencies are created based on
it. Bitcoin is based on open source software (OSS) development.
This paper presents the first comprehensive study of the Bitcoin
ecosystem in GitHub organized around 481 most popular and
actively developed Bitcoin related projects over eight years (2010–
2018). Our work includes manual categorization of the projects,
defining software health metrics, classification of projects accord-
ing to these health metrics, and evaluation of the health trends
of the ecosystem. The main findings suggest that the Bitcoin
ecosystem in GitHub is represented by nine categories of projects.
Moreover, the health of the majority of the projects is assessed
as “Low Risk”.

Index Terms—Bitcoin, cryptocurrency, ecosystem, health met-
rics, code quality, classification, trends

I. INTRODUCTION

The invention of Bitcoin as a currency has introduced an in-
formation technology that facilitates secure and decentralized
payment systems and tools for storage, verification, and au-
diting the information. Bitcoin is a decentralized entity that is
regulated by its users. Furthermore, it provides online transfers
between two individuals based on cryptographic proofs rather
than trust. Bitcoin relies on cryptographic algorithms and a
distributed network of users, allowing them to mine, store
and exchange their Bitcoins. Since the invention of Bitcoin
in 2008, it has become the fastest growing and most trusted
cryptocurrency in the market [1].

The concept of software ecosystem was first introduced in
2003 [2]. Since then, many different definitions of software
ecosystems were proposed [2], [3]. In this work, we adopt
the definition of a software ecosystem as proposed by Jansen
et al. [4]: “software ecosystem a set of projects, and actors
functioning around a common technological platform or a
market; they exchange knowledge, resource, and artifacts”.
Thus, our definition is also concerned about projects and
people involved in developing them for the purpose of sharing
their knowledge, expertise, and contributions. Our goal is to
define the Bitcoin software ecosystem in GitHub in terms
of its available projects and its contributors. Furthermore,
we perform an analysis of the health of the defined Bitcoin
ecosystem.

Currently, the total supply of Bitcoins available is 21
million, and the reward for Bitcoin mining is 6.25 Bitcoins.
However, the reward for Bitcoin mining is cut in half every
four years leading to a regular decrease in the incentive to mine
Bitcoin, and with it a decrease in the incentive to develop
software around Bitcoin as the reward to do so diminishes.
Furthermore, another concern that miners face is related to
how they would be paid if the supply of Bitcoin overruns.
One possible solution would be charging a transaction fee.
Nevertheless, Bitcoin remains the leading cryptocurrency in
the market, so it is important to explore its software ecosystem
and investigate whether it has formed a healthy software
ecosystem. The motivation behind studying this ecosystem
in GitHub is that GitHub is the most popular collaborative
development platform. GitHub is hosting more than 10 million
software repositories, and millions of developers collaborate
on project development in GitHub. Moreover, Bitcoin’s main
project is hosted on GitHub. Our study can provide useful
insights to the developers and researchers in the field of OSS
development, cryptocurrency, and software ecosystem.

The objective of this study is two-fold: 1) we are interested
in defining the structure of the Bitcoin ecosystem in GitHub
by categorizing the Bitcoin related projects, and 2) we aim to
evaluate the health of the defined Bitcoin ecosystem and to
analyze the trends in the health of the ecosystem as a whole.

In this study, we address the following research questions:

• RQ1: How the Bitcoin ecosystem is represented in
GitHub? Bitcoin is the leading cryptocurrency, understating
its development in GitHub can help us define its open-source
software ecosystem (OSSE).

• RQ2: How healthy is the Bitcoin ecosystem in GitHub?
Software is central to the Bitcoin function, and it follows
OSS development. Maintaining a healthy ecosystem of OSS
is also a prerequisite for the sustainable development of
open-source communities.

• RQ3: What are the trends in the health of the Bitcoin
ecosystem?
Answering this question can provide us with the indication
of whether the health of the ecosystem is improving over-
time or deteriorating.

This paper makes the following contributions:



PR
EP

RIN
T

1) Mapping out the Bitcoin ecosystem in GitHub by collecting
and analyzing all the relevant projects.

2) Analysis of the trends in the ecosystem’s health based on
the four metrics such as popularity, maturity, activity, and
code quality.

3) A set of recommendations to researchers and developers in
the field of cryptocurrency and software ecosystem.

II. RELATED WORK

A. Software Ecosystem

There is an extensive research in the field of software
ecosystems (SEs) in the past 10 years. Manikas et al. [5] found
that there is a significant increase in the published papers in
this field each year form 2007 to 2014. Some researchers con-
sider such rapid evolution of the large ecosystems as one of the
reasons, beside the product-line, and global development, for a
growing complexity in software development [6]. The research
state-of-the-art in this field is organized around three main
concepts such as defining the architecture of SEs, identifying
new SEs, evolution and health of SEs.

1) Software ecosystem’s architecture/identifying new SEs:
There is a vast number of studies towards defining the ar-
chitecture of a software ecosystem. Hyrynsalmi et al. [7]
have summarized the definitions in the literature into three
groups. The first group sees the software ecosystems (SE)
as a special case of business ecosystem, similar to Jansen et
al.’s view [4]. Many researchers agree to this definition that
SEs should be business oriented [4], [8], [9]. The second
group considers SEs as open-source projects, its dependencies
and community [10]. The last group defines SE as a set
of developers or organizations working together on a set of
development projects. Some researchers have conducted user
studies with experts in this domain to develop a definition of
a software ecosystem [5], [11]–[13]. Our research focuses on
exploring how a well-known Bitcoin ecosystem is represented
and defined in GitHub. Following the second group of SE,
we define the structure of the Bitcoin ecosystem in GitHub
in terms of the Bitcoin repositories, the developer community,
and a shared framework.

2) Software ecosystem’s health: The health of a SE defined
by Jansen et al. [14] refers to the normal functioning of the
projects that constitute the ecosystem and of the ecosystem
as a whole. They identified productivity, robustness, niche
creation as the health indicators of an SE. Furthermore, a group
of researchers [15] adopted a socio-technical perspective.
Following this perspective, they considered three levels of
health: social, technical and phenomenological. They con-
cluded that the health problems propagate to the ecosystem
due to the social and technical dependencies between the
projects [16]. They identified three social problems such as
loss of contributors, lack of interactions between contributors,
and low number of contributors and two technical problems:
poor code quality, and low number of code commits. Be-
sides, some researchers used the metrics [14] to evaluate
the health of successful organizations [17], [18]. Similarly,
some researchers have investigated the challenges related to

the quality assurance of software ecosystems which is critical
for embedded systems [19]. There is a number of studies
investigating software ecosystem health [7]–[9], [20]–[22].

3) Software ecosystems in GitHub: Majority of the studies
around identifying and studying the evolution of a software
ecosystem is in the domain of open-source development.
There are many studies that identify different ecosystems in
GitHub [23]–[27]. To the best of our knowledge, we are aware
of no work that studies the Bitcoin software ecosystem and its
health in GitHub or other collaborative platform.

III. METHODOLOGY

A. Data mining

A subset of the dataset used for this research comes from
GHTorrent. We retrieved a number of metrics such as the
number of commits, issues, watchers, forks, contributors and
programming languages from the GHTorrent dataset. However,
GHTorrent does not store the data related to source code
of the repositories. To collect source code features we used
PyDriller [28] to clone each of the selected repositories and
collect source code metrics. We use “repository” and “project”
interchangeably in this paper.

1) Project selection and pre-processing: We used GHTor-
rent’s MySQL database to identify Bitcoin related projects. We
queried the database via Google BigQuery using the keyword
“Bitcoin” in the name and description fields of a project. This
query resulted to 80,453 projects. Further, we cleaned the
dataset by applying the following filters:
1) We removed all “deleted” projects, as a result, the dataset

was reduce to 74,628 projects.
2) We considered only “master” repositories. This filter re-

duced our dataset to a significant number, i.e., 16,833
projects. This shows that the majority of the Bitcoin
projects are forks of the existing projects.

3) Furthermore, we considered projects with at least 10 com-
mits. We ended up with 3,601 projects having more than
10 commits.

4) We focused on “active” projects. Thus, we selected the
projects that have their last commit made in the last six
months. This filter limits our dataset to only active or
ongoing projects.

5) Our last filter eliminated solo projects, thus we consider
projects that are maintained by more than two developers.
This filter reduced the dataset to 581 projects.

2) Collecting source code features: In order to analyze the
quality of the source code, we need to extract features such as
code complexity, methods count, token count, etc. To collect
these code quality features we used PyDriller [28] to clone
each repository in the dataset and extract the required features.
Out of 581 repositories 50 of them were not not found during
the cloning process. We confirmed this by visiting the GitHub
page for each repository, and found that these projects no
longer exist. Furthermore, during our semi-automated clas-
sification of the repositories we found 50 repositories to be
irrelevant, they are not Bitcoin repositories even though the



PR
EP

RIN
T

Table I
FEATURES OF THE REPOSITORY-LEVEL DATASET.

Feature Description
project id Unique ID for each repo
name Name of the repo
URL GitHub API URL of the repo
description Description for the repo
language Top 3 most frequent prog. languages
created at Date the repo is created at
forked from ID for its parent repo
deleted Whether repo is deleted or not
updated at Date the repo is last updated
forked commit id ID of the commit when repo was forked
commit Number of commits per repo
issues Number of issues per repo
watchers Number of watchers per repo
contributors Number of contributors per repo
forks Number of forks per repo
cyclomatic complexity Mean of CC over the commits in repo
nloc Mean of nloc in commits/repo
lines added Mean of lines added to commits/repo
lines removed Mean of lines removed from commits/repo
token count Mean of token count over the commits/repo
method count Mean of method count over commits/repo
modifications Number of modification per commit/repo
frq change type Frequently changed type in commits/repo
frq file changed Frequently changed file in commits/repo

name of the repository contains a “Bitcoin” word. Therefore,
we have collected the source code features for 481 repositories
over the period of 8 years. As result, our dataset consists of
337,008 commits from 481 GitHub projects. Thus, we ended
up having two final datasets: repo-level and commit-level. The
repo-level dataset is comprised of 481 projects with 24 features
over the 8 years shown in Table I. While the commit-level
dataset contains 12 features from cyclomatic complexity to
frq file changed in Table I over the period of 8 years.

B. Defining the Bitcoin ecosystem

We are interested in determining which Bitcoin applications
have open-source projects on GitHub. For this purpose, we
manually classify the projects in the dataset based on their
application category. Manual classification of the projects was
performed by two coders; while disagreement cases were rare,
such cases were discussed and resolved by the coders to reach
a consensus. We studied the projects’ name, description and
README file. Initially, we started with development, wallet
and payment categories. These are the prominent categories
in the more general Bitcoin ecosystem [29], so we anticipated
their presence in GitHub. We searched the GHTorrent dataset
for Bitcoin projects which could be a part of a certain category.
For example, we knew that Bitcoin has its official repository
hosted on GitHub, and is a part of the development category.
Similarly, for payment category, there are many businesses
that are accepting Bitcoin as payment, thus many applications
of this nature are likely to be hosted and maintained in
GitHub. Furthermore, after searching for Bitcoin wallets we
were able to find that some very popular wallet applications
such as Bitcoin Core wallet, Samourai, and Armory have
GitHub projects. Thus, we first identify all the projects in the
dataset that would fall into these three categories. This semi-
automated process follows two steps: 1) regular expressions

Table II
KEYWORDS USED.

Category Keywords

Development implementation,ide,protocol,plugin,module,algorithm,
api,libraries,tool,blockchain

Wallet wallet,bitkey,xapo,opendime,wasabi,coldcard,greenaddress,
sentinel,electrum,Bitcoin core wallet,samourai,armory

Services
website,Bitcoin cash,proxy,optech,bitnode,otx,
Bitcoin visuals,blockstream,coindance,byll,lolli,fold,bazaar,
tallycoin,bitpatron,bitrefill,fastBitcoin,purse

Documentation documentation,doc

Mining mining,miner,mine,honeyminer,pool,bitfury,canaan,
bitmain,ebang,halong mining,sluch pool

Trade
trade,exchange,bakkt,hodl hodl,localBitcoins,cash app,
xbt provider,paxful,cme group,
bull Bitcoin,Bitcoin international trust

Payment payment,bitpay,opennode,blockstream satellite,
paynym,azteco,btcpay,gotenna

Node node,casa,nodl,dojo,raspiblitz,lightning,bitseed
Data Analysis data,analysis,social,media,analytic

were used to search for keywords (shown in Table II) in the
name or description of a project, and 2) manual check of the
project’s GitHub URL to confirm the results.

During the initial search, we found that some of the
repositories can be better presented by the categories other
than the initial three categories that we stared with. Thus,
we have identified six more categories of the ecosystem.
Our classification approach includes manual analysis of the
repositories with no description or if the type of the repository
was not clear from its description. For the repositories with no
description (385 projects), we manually classified them using
their README files.

C. Health Analysis
We define health metrics and then classify the projects into

three classes of health. Furthermore, we analyze the health
trends at the project level and the ecosystem as a whole.

1) Health metrics definition and heuristics : In order to
classify the projects we introduce four metrics: 1) popularity,
2) activity, 3) code quality, and 4) age and assigned the features
that are associated with them. The combination of these
metrics serves as proxy of our definition of the ecosystem’s
health. Table III presents these metrics, labels, related features,
and the algorithms used for assigning labels to the projects.

Activity: Projects with a high number of code commits
are well developed [15]. We also associate the number of
issues created within a repository to the activity of the project,
assuming that a high number of issues contributes to higher
participation of the greater user community.

Age: Age is an indicator used for determining the health of
an open-source project. Projects may be mature, growing or
new, i.e., created just a few months ago.

Popularity: We use watchers as the popularity metric. We
believe that projects with higher popularity are more likely to
be actively developed and maintained. This belief is echoed
by the existing work, e.g., Jansen et al. [14] state that the
number of project’s downloads is a strong predictor of its
good health. While Borges et al. [30] found that three out
of four users consider the number of stars on the project prior
to contributing to it.



PR
EP

RIN
T

Table III
HEALTH METRICS.

Category Labels Features Labeling

Popularity
high watchers Algorithm 1
medium forks
low

Complexity
high code complexity Algorithm 3
medium nloc
low lines added

lines removed
token count
method count

Activity
high commits Algorithm 2
medium issues
low contributor

Age
new age in weeks Algorithm 4
growing
mature

Table IV
FEATURES; Q DENOTES “QUARTILE”.

Feature Q1 Q2 Q3 Mean Max
Commits 44.5 342 914.3 623.86 10,901
Issues 2.25 70.06 527.73 111.12 13,038
Contributors 2.35 5.19 128.28 6.5 442
Watchers 10.45 122.53 778.41 223.06 32,056
Forks 6.39 47.97 538.94 82.95 1,4951
Age 15.79 48.03 51.56 51.63 380
CC 4.51 30.23 211.54 34.72 1,929.77

Code quality: By considering code complexity metric, we
can assess code quality of the project. If the complexity of
the source code is high, it may contribute to a poor quality
of code. We use cyclomatic complexity (function level) [31]
to measure the code complexity due to ease of calculation
and interpretation. It supports major languages such as C/C++,
Java, C#, JavaScript, Objective-C, Python, and more.

2) Classification of projects: Using quartiles as thresholds
is a common practice in different fields [32]. Similarly, for
labeling, we considered quantiles as the thresholds instead of
the mean, because the mean can be affected easily by the
outliers in the data. Table IV shows the descriptive statistics
of the features in the ecosystem. Algorithms 1–5 are heuristic-
based approaches of assigning labels (e.g., high, medium, or
low popularity) to the projects.

Algorithm 1: a heuristics-based approach of classifying
projects based on the popularity metric. If the value of
watchers is less than the (Q1) then its popularity is determined
as low. While if it is greater than (Q1) and less than (Q2) we
label the project’s popularity as medium. While if it is greater
than (Q2) then we label the project’s popularity as high.

Algorithm 2: a heuristic-based classification based on the
project activity. If the values of all the features are greater than
Q1, then we label the project’s activity as high. Furthermore,
if two of the features have a value greater than the Q3, we
label the project as having high activity. On the other hand, if
any of the features have a value less than Q1, then we label
the project as low. For the class medium activity; two of the
features should have a value greater than Q1.

Algorithm 3: a heuristic-based classification based on the
age of the projects. We set three thresholds. If the value of
age is less than Q1 then we label the project as new. While if

the value of age is greater than Q1 and less then Q2, we label
the project as growing. On the other hand, if the value of age
is greater than Q2 then we label the project as mature.

Similarly, Algorithm 4 is a heuristic-based approach of clas-
sifying projects based on their code complexity. Here again,
we set three thresholds. First, if the value of the complexity
is less than Q1, then we label the project as low in terms of
complexity, but if the value is between Q1 and Q2 the project
is labeled as having medium complexity. Lastly, for all other
cases the project is classified as having high complexity. While
health can be defined as spectrum of different categories, we
classify project’s health into healthy, low risk, and at risk
categories.

Algorithm 5 describes the process of classifying projects
into three health categories. If a project shows low activity,
defined as new, with low popularity, high or medium com-
plexity, then we classify the project as At Risk. For the second
class, if a project demonstrates high or medium activity, is a
mature or growing project, with high and medium popularity,
with low and medium complexity values, we label the project
as Low Risk. If none of the above conditions are satisfied, then
the project is classified as Healthy.

3) Trends in health of the ecosystem as a whole: We define
the health of a software project in terms of four metrics such
as popularity, activity, maturity (age), and code quality. These
metrics combine both technical and social aspects related to
the health of an open-source project. We perform a quantitative
analysis of the trends considering all the defined health metrics
for the ecosystem as whole, not just at the project-level.

Activity: To identify the trends of the ecosystem’s health
over the years we consider the following:
1) For the analysis of the contributions, we consider the num-

ber of commits per year, per category, and a combination
of both, and the change in contribution per year.

2) A continuous collaboration between different stakeholders
is important for an ecosystem to function well [33]. To
analyze collaboration between developers, we analysed the
number of authors working in one, two, three, four and
five or more projects. For retention rate, we calculate the
number of new authors subtracted from the loss of authors
every year. We calculate the change of contributors for all
the projects per category, per year.

3) To determine the loss of contributors in a year, we consider
the authors whose last commit was made in that year.

4) To analyze issues, we determine the average number of
issues created each year for all projects and the average
number of issues created for each year for all categories.

Popularity: To analyze the popularity, we calculate the
mean of watchers for each year for all repositories, as well
as the average number of watchers per year and per category.

Code quality: To analyze the quality of the source code,
we determine how the CC is changing over the years.

IV. RESULTS

We now present the results and answers to our research
questions.



PR
EP

RIN
T

Table V
THE CATEGORIES OF THE BITCOIN SOFTWARE ECOSYSTEM.

Category #repos #issues #watchers #devs #commits
Data analysis 25 95 103 80 1,539
Development 223 32,114 79,050 1,661 181,875
Documentation 6 17 23 17 186
Mining 11 41 58 36 2,116
Node 26 6,952 10,030 421 28,065
Payment 27 626 1,067 84 8,580
Services 86 5,366 6,153 387 26,023
Trade 31 2,180 5,501 180 14,578
Wallet 46 6,062 5,309 291 34,173

A. RQ1: How the Bitcoin ecosystem is represented in GitHub?

After a thorough research about the applications of Bitcoin,
we classify the projects into nine categories. Table V presents
the our results of the categories that represent the Bitcoin
ecosystem in GitHub. During our manual classification, 50
out of 581 projects (8%) were excluded from the dataset as
they were determined to be irrelevant. We now offer a brief
explanation of each category:

Development: Any repository which contains specific im-
plementation of a protocol, IDE, plugin, module, library,
API, tool, or algorithm is classified as development. This
category has the highest number of projects and commits —
223 and 181,875, respectively. Bitcoin’s main project, called
bitcoin/bitcoin is a part of this category, which is the most
active project in terms of collaboration, popularity and age in
the ecosystem. The top three programming languages in this
category are JavaScript, Python and Swift.

Documentation: The projects containing Bitcoin documen-
tation are classified under this category. There are only six
projects that contain documentation for Bitcoin with 17 unique
developers contributing to this category. One of the projects in
this category explains the security threat model of the Bitcoin
cryptocurrency.

Services: Any specific implementation of any kind of
service is classified under this category. For example, there are
different online resources that offer a variety of services related
to Bitcoin and its information. Furthermore, many businesses
are adopting Bitcoin as payment, they host their websites to
provide any needed information related to their business. The
most active project in this category is OpenBazaar Desktop,
an interface for OpenBazaar Bitcoin node.

Node: A node is a device, usually a computer or any other
electronic device, that participates in running a cryptocurrency
network. Casa and Eclair are examples of an application that
is used to run a node of the Bitcoin network. This category
has 26 projects and 421 contributors.

Wallet: This class contains all the projects specific to the
implementation of wallets. This category includes 46 projects
and 291 contributors. The two most popular projects in this
category are Electrum and Bither. The top three languages in
this category are Java, Python and Ruby.

Mining: Mining is the process of adding various cryp-
tocurrency transactions and evidence of mining work to the
blockchain ledger. This category includes repositories that
implement features specific to the mining process. There are

Table VI
DESCRIPTIVE STATISTICS FOR HEALTH CATEGORIES.

Feature Healthy Low Risk At Risk
#projects 85 322 74

Min Mean Max Min Mean Max Min Mean Max
Commits 12 752.2 5,049 10 676.6 10,901 10 246.9 9,580
Devs 2 9.1 91 2 6.9 442 2 2.2 7
Issues 2 202.4 2,432 0 112.4 13,038 0 1 12
Watchers 3 355.9 7,853 0 239 32,056 0 0.9 7
Age 16.3 127.3 343.6 0.9 41.2 380.0 0.4 10 15.7
CC 0 10.6 29.9 0 33 984.5 4.5 69.7 1,929.8

many software applications for mining Bitcoins, for example,
Bitcoin miner. The main programming languages in this cate-
gory are Groff and shell.

Trade: Trading Bitcoins means selling or buying coins.
There are multiple platforms through which we can trade
Bitcoin. MetaTrader5 is a popular multi-functional platform
offering state-of-the-art trading capabilities, technical analy-
sis tools, and advanced auto trading systems. This category
includes 31 projects and 180 contributors, the top two used
programming languages are Java and Elixir.

Data analysis: The projects that are related to the analysis
and prediction on Bitcoin data. For example, a project in this
category implements an application that could predict Bitcoin
market prices based on the discussions on Twitter.

Payment: Many big businesses are adopting cryptocur-
rencies as a method of payment. BTCPay is an example
of payment software, which also has a public repository in
GitHub. There are 27 projects in this category which offer
different solutions to the payment systems. HTML is used by
majority of the projects followed by Javascript and CSS.

Answer to RQ1: Based on our findings, the Bitcoin soft-
ware ecosystem in GitHub is represented by 481 projects
as of 01-04-2018. The classification of these projects re-
sulted in nine categories, including wallets, services, trade,
node, mining, development, payments, documentation, and
data analysis.

B. RQ2: How Healthy is the Bitcoin Ecosystem in GitHub?

In this work, the Bitcoin software ecosystem in GitHub is
classified into three classes of health — Healthy, Low Risk, and
At Risk with 85, 322 and 74 projects, respectively. Table VI
shows the min, max and mean values for the features we used
to classify the projects.

The average number of commits in class Healthy is 752.188,
while it is 676.618 in class Low Risk, and 246.918 in class
At Risk. Similarly, the average number of contributors in class
Healthy is 9.141, 6.888 in Low Risk, and 2.189 in class At
Risk. Whereas the average number of CC is 10.610 in class
Healthy, 29.901 in class Low Risk, and 69.718 in class At Risk.
Healthy projects appear to be mature, very active projects (on
average around 750,000 commits), with large community of
contributors, high popularity, high number of issues (issues are
representing requests to fix bugs or add new functionality), and
low code complexity. At Risk projects can be defined as 2–3
month old repositories with a few or zero watchers, issues,



PR
EP

RIN
T

Table VII
NUMBER OF PROJECTS CREATED EACH YEAR.

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018
Projects 5 14 4 12 30 31 23 218 154

Figure 1. The average number of commits per category and per year.

much smaller community of contributors, and of high code
complexity. The Low Risk projects are performing well on at
least one category of health. For example, this class includes
a project which has the maximum number of contributors in
the ecosystem, i.e., 442, but the project also has the highest
cyclomatic complexity which makes it at Low Risk and not
Healthy.

Answer to RQ2: Majority of the projects of the Bitcoin
ecosystem demonstrate Low Risk health indicators which
is a good sign for the overall health of the ecosystem,
while 17% of projects are appear to be Healthy and only
15% of projects are deemed to be At Risk.

C. RQ3: What Are the Trends in the Health of the Bitcoin
Ecosystem?

Here, we present the results of our analysis of the ecosys-
tem’s health trends.

1) Activity: Table VII shows the number of projects created
each year. Five projects that were created in the year 2010,
when Bitcoin has emerged as a cryptocurrency, are still being
actively developed. In 2011, 14 more projects have been
created, but in 2012 only 4 new Bitcoin related projects were
added to GitHub. The number of new projects is increasing
after year 2013. In 2014, 30 new projects have been created,
and in 2017 the number of new projects has jumped to 218.
2018 is marked with 83 new projects created just in the first 4
months of the year. As we can see from the table the number of
projects is increasing rapidly after year 2016. We can observe
an increased interest in the Bitcoin related development and
representation of projects in GitHub since 2017.

The year-to-year growth rate of commits is decreasing till
year 2015 except 2014, where there is a slight increase and
the this change is significant from year 2011 to 2012. After
2015 the growth rate is constantly increasing till year 2018.
Furthermore, Figure 1 shows the number of commits per
each category in the ecosystem. Till year 2014, the Bitcoin
ecosystem was represented only via five categories such as
development, mining, node, services, and wallet. In 2010, four
categories (except mining) have equal number of commits, i.e.,
200. Up until year 2013, mining category of projects has the

lowest number of commits. After 2011, node category has the
highest number of commits, while there is no significant differ-
ence between other four categories. In 2014, documentation,
trade, and payment categories have emerged. Documentation
has the lowest number of commits, while trade has the highest
number of commits followed by node. The documentation
category shows no activity in 2015 and 2016, but shows slight
activity in 2017 and 2018. In 2017, data analysis has emerged
as a category with the second lowest activity. In 2018, payment
has the highest number of commits, followed by trade, while
development, node, and wallet have almost the same number of
commits. We also calculated the average number of commits
per developer. The average is taken by dividing the total
number of commits by the number of projects a developer
has contributed to. The number of commits for the majority
of the developers is below the average, i.e., 35 commits.

Collaboration of authors: Involvement of different devel-
opers is measured in terms of their input to various projects.
We calculate the following metrics in order to evaluate the
contributions to the Bitcoin ecosystem: the loss of contributors,
developers retention rate in the ecosystem, and number of
developers contributing across different projects and across
different categories.

Additionally, we wanted to explore whether developers
within the Bitcoin ecosystem are collaborating and interacting
with each other. To determine this we have analyzed develop-
ers who are working on more than one project and whether
these projects belong to different categories of the ecosystem.
We found that 88% of the developers are contributing to only
one project, and the remaining 12% are working on more than
one project, with 7% of developers contributing to 2 projects,
2% to 3 projects, 1% to 3 projects and 1% of developers to 5
and more projects. The three most collaborating categories are
development and services and wallet. where 56 developers are
working in both development and services, and 84 developers
are working in development and node. 84 is the highest number
of developers contributing across different categories, follow-
ing by 76 developers who are working in development and
services. We also found that projects in the wallet, trade and
development categories do not have any common contributors.

Issues: The average number of issues created over the
years was calculated by dividing the number of issues with
the number of projects per year. We found stability in the
average number of issues. The number of issues is decreasing
constantly after year 2011, meaning that projects’ code is
becoming less bug prone. Figure 2 shows that development
is the dominant category in terms of number issues, followed
by wallet from year 2012 to 2014. After 2015, the most of the
issues were created in the node category which may appoint
to the popularity and higher contributions to this category in
the recent years.

2) Popularity: Figure 3 shows the average number of
watchers for different categories through the years. In 2010
and 2011, the only category is development. After 2012,
wallets projects are gaining attention, and it becomes the
second popular category till 2014. In 2015, node is gaining



PR
EP

RIN
T

Figure 2. Average number of issues per year per category.

Figure 3. Average number of watchers per year and per category.

more popularity. Between 2015 and 2016, node stays as the
second popular category, while in 2017 and 2018 it becomes
the most popular one followed by development.

3) Code quality: The higher the complexity the lower the
code quality. High CC means there are more independent paths
in a module that would require more tests, as well as higher
cognitive loads from developers to comprehend and maintain
the system. There is a significant decrease in CC in 2011.
From 2011 to 2012 it is increased almost by 100 independent
paths through a module. It is decreasing till year 2015, but
then it is again increasing till year 2017. Figure 4 shows
complexity over the categories. In 2010, all the categories
such as development, node, services has the same complexity,
while mining has the lowest complexity. From year 2011 to
2014, node has the highest complexity, while in 2017 it is
almost 900 for development and around 200 for the rest of the
categories. Mining overall has the lowest complexity, but in
2018 it reaches the complexity of 1,200 unique paths.

4) Age: Table VIII shows some descriptive statistics about
the age (in weeks) of the projects in the ecosystem. The
average age of the projects within the Bitcoin ecosystem is
52 weeks (about a year) meaning that most of the projects are
relatively young and in early stage of the development. The
Bitcoin’s main repository is the oldest project in the ecosystem
that is 380 weeks (around 7 years and 3 months) old, and is
a part of development category.

Answer to RQ3: Overall, the Bitcoin ecosystem’s activity
has been on the rise since 2015; while the developer
retention rate has been decreasing. While the ecosystem’s
popularity and code complexity is growing every year,
cross-category contributions and collaboration between
developers have been very low.

Table VIII
DESCRIPTIVE STATISTICS FOR PROJECTS’ AGE.

Mean Std Min 25% 50% 75% Max
51.634 74.128 0.428 10.428 17.571 44.428 380.000

Figure 4. Average code complexity per category.

V. DISCUSSION

A. Implications for the Bitcoin Community in GitHub

We have a number of recommendation to offer for the Bit-
coin developers. First, we noticed that the number of contribu-
tors seem to be decreasing each year. According to Wahyudin
et al. [34], in a healthy and sustainable software ecosystem
developers contribute to different projects, but problems arise
when they leave the ecosystem. To increase sustainability of
the ecosystem, a number of actions can be applied to increase
the developer retention rates. Constantinou et al. [35] reveal
that developer retention can be improved when contributors
remain active and have strong contribution intensity, regardless
of whether they are core or peripheral developers. Lin et
al. [36] find through survival analysis that developers who
join a project earlier have higher chances to stay longer,
thus they suggest that encouraging newcomers may effect
their survivability on the project. Second, we found only six
projects that are related to Bitcoin documentation. To improve
code quality, as well as better developer understanding of
community’s goals, more efforts should be dedicated to writing
various kinds of documentation related to code (e.g., code
review, code standards), community (existing policies, code of
conduct, policies, vision, etc) and more. Third, only 12% of
the developers are contributing to more than one category. The
Bitcoin ecosystem should facilitate better knowledge transfer
across different categories to be able to maintain a sustainable
software ecosystem. Having certain initiatives in place, such as
a dedicated group of users who can oversee the overall health
and growth of the ecosystem can foster more sustainable future
of the Bitcoin ecosystem within GitHub.

B. Implications for Research Community

Health metrics of a software ecosystem are not well defined;
with most researchers referring to social metrics [15], [16],
[37]. Similar to previous work [15], [38], we showed that code
quality metrics such as CC, as well as social metrics can be
useful in measuring the health of an ecosystem.

We have defined the Bitcoin ecosystem in GitHub using
our knowledge of a more general definition of the Bitcoin
ecosystem. Many researchers have used other common ways



PR
EP

RIN
T

such as package dependency and project relevance [4], [8]–
[10]. However, for ecosystems that may include projects with
no known package dependency or relevance such as in the
example of the Bitcoin ecosystem, what approach should be
followed for identifying such ecosystems and their boundaries?
We believe that research community should continue their ef-
forts in establishing and developing techniques for identifying
software ecosystems, assessing and evaluating their health.

C. Threats to Validity

One potential threat can be the quality of the GHTorrent
dataset. We have mitigated the GHTorrent quality by collecting
our metrics by querying “live” GitHub data using Big Query.
To mitigate human bias and error during manual categorization
for RQ1, two coders were involved in classifying projects into
nine categories. Additionally, our categorization of the Bitcoin
projects is dated to 01-04-2018; more projects may have
emerged in GitHub organized around various and potentially
new categories within the ecosystem.

VI. CONCLUSION

In this work, we have studied the Bitcoin software ecosys-
tem in GitHub and explored its health. We defined the Bitcoin
software ecosystem in GitHub by manually classifying the
projects into nine categories. We then defined the health
metrics by leveraging both the social and technical features of
a project. We then analyzed the health trends of the ecosystem
by performing the analysis over the span of eight years and
across different categories.

REFERENCES

[1] D. Williams, Cryptocurrency Compendium: A Reference for Digital
Currencies. Lulu.com, 2017.

[2] D. G. Messerschmitt and C. Szyperski, “Software ecosystems: under-
standing an indispensable technology and industry. 2003,” 2003.

[3] K. Manikas and K. M. Hansen, “Software ecosystems–A systematic
literature review,” Journal of Systems and Software, vol. 86, no. 5, pp.
1294–1306, 2013.

[4] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community:
A research agenda for software ecosystems,” in Int. Conf. on Software
Engineering, 2009, pp. 187–190.

[5] K. Manikas, “Revisiting soft. ecosystems research: A longitudinal liter-
ature study,” Journal of Systems and Soft., vol. 117, pp. 84–103, 2016.

[6] J. Bosch and P. Bosch-Sijtsema, “From integration to composition: On
the impact of sw product lines, global development and ecosystems,”
Journal of Systems and Software, vol. 83, no. 1, pp. 67–76, 2010.

[7] S. Hyrynsalmi, J. Ruohonen, and M. Seppänen, “Healthy until otherwise
proven: some proposals for renewing research of software ecosystem
health,” in Int. Workshop on Software Health, 2018, pp. 18–24.

[8] S. Jansen, S. Brinkkemper, and A. Finkelstein, “Business Network Man-
agement as a Survival Strategy: A Tale of Two Software Ecosystems,”
Iwseco@ Icsr, vol. 2009, 2009.

[9] J. Bosch, “From software product lines to software ecosystems,” in
SPLC, vol. 9, 2009, pp. 111–119.

[10] M. Lungu, “Towards reverse engineering software ecosystems,” in Int.
Conf. on Software Maintenance, 2008, pp. 428–431.

[11] A. Serebrenik and T. Mens, “Challenges in software ecosystems re-
search,” in European Conf. on Soft. Architecture, 2015, pp. 1–6.

[12] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open source
software ecosystems: A Systematic mapping,” Information and Software
Technology, vol. 91, pp. 160–185, 2017.

[14] S. Jansen, “Measuring the health of open source software ecosystems:
Beyond the scope of project health,” Information and Software Technol-
ogy, vol. 56, no. 11, pp. 1508–1519, 2014.

[13] J. Knodel and K. Manikas, “Towards a typification of software ecosys-
tems,” in Int. Conf. of Software Business, 2015, pp. 60–65.

[15] T. Mens, B. Adams, and J. Marsan, “Towards an interdisciplinary, socio-
technical analysis of soft. ecosystem health,” arXiv:1711.04532, 2017.

[16] K. Carillo, J. Marsan, and B. Negoita, “Exploring the bio-
sphere—Towards a conceptualization of peer production communities
as living organisms,” in Proc. AIS SIGOPEN Developmental Workshop
for Research on Open Phenomena, 2017, pp. 1–12.

[17] J. Dijkers, R. Sincic, N. Wasankhasit, and S. Jansen, “Exploring the
effect of soft ecosystem health on the financial performance of the open
source companies,” in Int. Workshop on Soft. Health, 2018, pp. 48–55.

[18] D. Alami, M. Rodrı́guez, and S. Jansen, “Relating health to platform
success: exploring three e-commerce ecosystems,” in European Conf.
on Software Architecture Workshops, 2015, pp. 1–6.

[19] J. Axelsson and M. Skoglund, “Quality assurance in software ecosys-
tems: A systematic literature mapping and research agenda,” Journal of
Systems and Software, vol. 114, pp. 69–81, 2016.

[20] S. Hyrynsalmi, M. Seppänen, T. Nokkala, A. Suominen, and A. Järvi,
“Wealthy, Healthy and/or Happy—What does ‘ecosystem health’stand
for?” in Int. Conf. of Software Business. Springer, 2015, pp. 272–287.

[21] K. Manikas and K. M. Hansen, “Reviewing the health of software
ecosystems-a conceptual framework proposal,” in Int. workshop on
software ecosystems, 2013, pp. 33–44.

[22] S. da Silva Amorim, F. S. S. Neto, J. D. McGregor, E. S. de Almeida, and
C. von Flach G. Chavez, “How has the health of software ecosystems
been evaluated? A systematic review,” in Brazilian symposium on Soft.
Eng., 2017, pp. 14–23.

[23] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and
a Method for Ecosystem Identification Using Reference Coupling,” in
Working Conf. on Mining Software Repositories, 2015, pp. 202–211.

[24] Z. Liao, N. Wang, S. Liu, Y. Zhang, H. Liu, and Q. Zhang,
“Identification-Method Research for Open-Source Software Ecosys-
tems,” Symmetry, vol. 11, no. 2, p. 182, 2019.

[25] E. Constantinou and T. Mens, “Social and technical evolution of software
ecosystems: A case study of Rails,” in European Conf. on Software
Architecture Workshops, 2016, pp. 1–4.

[26] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Conf. on Software Maintenance, Reengineering, and
Reverse Engineering, 2014, pp. 308–312.

[27] E. Constantinou and T. Mens, “Socio-Technical Evolution of the Ruby
Ecosystem in GitHub,” in Int. Conf. on Software Analysis, Evolution
and Reengineering, 2017, pp. 34–44.

[28] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in European Soft. Eng. Conf. and
Symposium on the Foundations of Soft. Eng., 2018, pp. 908–911.

[29] John Dantoni, “ Mapping out Bitcoin’s Ecosystem,” https://www.
theblockcrypto.com/genesis/12941/mapping-out-bitcoins-ecosystem.

[30] H. Borges and M. T. Valente, “What’s in a GitHub star? understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112–129, 2018.

[31] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[32] H.-C. Shih and E.-R. Liu, “New quartile-based region merging algo-
rithm for unsupervised image segmentation using color-alone feature,”
Information Sciences, vol. 342, pp. 24–36, 2016.

[33] P. B. De Laat, “Governance of OSS: state of the art,” Journal of
Management & Governance, vol. 11, no. 2, pp. 165–177, 2007.

[34] D. Wahyudin, K. Mustofa, A. Schatten, S. Biffl, and A. M. Tjoa, “Mon-
itoring the “health” status of open source web-engineering projects,” Int.
Journal of Web Information Systems, 2007.

[35] E. Constantinou and T. Mens, “An empirical comparison of developer
retention in the rubygems and npm soft. ecosystems,” Innovations in
Systems and Soft. Eng., vol. 13, no. 2-3, pp. 101–115, 2017.

[36] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, in-
dustrial open source projects: Insights from applying survival analysis,”
in Int. Conf. on Global Software Engineering, 2017, pp. 66–75.

[37] T. Mens, M. Claes, and P. Grosjean, “ECOS: Ecological studies of
open source software ecosystems,” in Conf. on Software Maintenance,
Reengineering, and Reverse Engineering, 2014, pp. 403–406.

[38] V. Karakoidas, D. Mitropoulos, P. Louridas, G. Gousios, and D. Spinel-
lis, “Generating the blueprints of the java ecosystem,” in Working
Conference on Mining Software Repositories, 2015, pp. 510–513.

https://www.theblockcrypto.com/genesis/12941/mapping-out-bitcoins-ecosystem
https://www.theblockcrypto.com/genesis/12941/mapping-out-bitcoins-ecosystem

	Introduction
	Related Work
	Software Ecosystem
	Software ecosystem's architecture/identifying new SEs
	Software ecosystem's health
	Software ecosystems in GitHub


	Methodology
	Data mining
	Project selection and pre-processing
	Collecting source code features

	Defining the Bitcoin ecosystem
	Health Analysis
	Health metrics definition and heuristics 
	Classification of projects
	Trends in health of the ecosystem as a whole


	Results
	RQ1: How the Bitcoin ecosystem is represented in GitHub?
	RQ2: How Healthy is the Bitcoin Ecosystem in GitHub?
	RQ3: What Are the Trends in the Health of the Bitcoin Ecosystem?
	Activity
	Popularity
	Code quality
	Age


	Discussion
	Implications for the Bitcoin Community in GitHub
	Implications for Research Community
	Threats to Validity 

	Conclusion
	References

