
PR
EP

RIN
T

Can GraphQL Replace REST?
A Study of Their Efficiency and Viability

Sri Lakshmi Vadlamani, Benjamin Emdon, Joshua Arts, and Olga Baysal
School of Computer Science

Carleton University
Ottawa, Canada

{sri.vadlamani, benjamin.emdon, joshua.arts, olga.baysal}@carleton.ca

Abstract—Representational State Transfer (REST) has tradi-
tionally been the standard web service architectural style for
API creation. However, its popularity has been challenged with
the introduction of GraphQL, an open source query language
for APIs introduced by Facebook, in 2015. The latter has been
quickly adopted by GitHub, Shopify, Airbnb, Twitter and more
online portals are joining the list. In some instances, GraphQL
has been adopted as an alternative architectural style or has been
used in conjunction with REST.

While GraphQL promises a considerable improvement over
REST, much remains unexplored with respect to its efficiency and
feasibility in its application. The goal of this paper is to determine
viability of using GraphQL over REST for API architecture
from quantitative and qualitative perspectives. A custom API
client on GitHub is constructed to check on the response times
and the corresponding magnitude of difference between REST
and GraphQL. Thereafter, the paper surveyed employees of
GitHub to understand software developers’ educated opinion and
perceptions about REST and GraphQL based on their practical
experience with APIs. The results show that both API paradigms
have their benefits and weaknesses, and one cannot replace the
other, at least in the near future.

Index Terms—GraphQL, REST, efficiency, viability, adoption,
developer perspective, survey, APIs.

I. INTRODUCTION

The advancement of API protocols in the software industry
has evolved over time. The demand for flexible and consistent
API contracts has increased as more companies build public
facing APIs. REST is currently the most common API protocol
in the industry. REST-compliant web services make their
resources available through specified HTTP endpoints. Each
resource requires its own request. One of the major limitations
of REST is that API users often require multiple related
resources at a time, resulting in multiple round trip requests to
fetch each resource. This limitation makes it difficult for third-
parties to integrate with REST-compliant services efficiently,
since integrator often needs to access multiple resources at
a time. GraphQL, is an alternative API protocol, developed
by Facebook in 2012; it has been more widely adopted,
since the definition and implementation of GraphQL has been
open-sourced in 2015. GraphQL offers a comprehensive API
protocol which claims to address some of the issues with
REST. One major advantage of GraphQL over REST is that
API users are given the capability to, in a single request,
request all and only the resources they need [1], [2].

While GraphQL promises a considerable improvement over
REST, much remains unexplored with respect to its efficiency
and feasibility in its application. This paper attempts to explore
the benefits and weaknesses of both REST and GraphQL to
ascertain if it is indeed possible for GraphQL to replace REST
or to understand if they would have to co-exist, at least for
now. More precisely, the goal of this paper is to determine the
viability, or lack thereof, of using GraphQL over REST for
API architecture, to ultimately make a recommendation on its
use cases.

GitHub, the platform for open and closed source software
collaboration, was one of the early adopters of GraphQL in
2016, while maintaining its REST capability in parallel [3].
Since then, GitHub has maintained one of the largest and most
used GraphQL APIs in the industry.1

This paper analyzes REST and GraphQL from both quan-
titative and qualitative perspectives. The quantitative study
focuses on comparing the efficiency of REST to GraphQL
against four queries. While the qualitative study aims at
identifying what software developers think about REST and
GraphQL based on their practical experience with APIs.
Moreover, the quantitative analysis refers to the academic
evaluation, while the qualitative study is part of the industrial
validation.

II. BACKGROUND

A major design point of REST is that its implementation is
only dependent on HTTP/1.1, i.e., any machine that supports
HTTP/1.1 can effectively implement or communicate with a
REST-compliant service [4], [5], [6], [7]. Moreover, REST
specifies a clear separation of client and server. Servers expose
resources through a URL. Clients request resources through an
HTTP request. REST is a stateless protocol, meaning that the
server and client are not aware of each others states. Also,
REST requires that a client make the effort to determine the
specifics of the resource or operation they hope to accomplish.
A REST request consists of: a HTTP verb, a path to the
resource, a header and a body.

1GitHub has granted this study access to survey GitHub employees
and analyze its public APIs to further the industry’s knowledge on this
topic. A replication package of this survey and software developed to
conduct quantitative analysis is available at https://github.com/Sri-Vadlamani/
Can-GraphQL-Replace-REST-

https://github.com/Sri-Vadlamani/Can-GraphQL-Replace-REST-
https://github.com/Sri-Vadlamani/Can-GraphQL-Replace-REST-

PR
EP

RIN
T

An HTTP request always expects a response, therefore,
providing an accept header in the request will tell the server the
format of the response. A typical response consists of a status
code, a header and a body. Some status codes are standard
in HTTP/1.1, while other unused codes are usually adopted
for implementation of specific use cases. REST takes full
advantage of HTTP caching. HTTP caching allows resources
to be copied to multiple places along the request path (e.g.,
local cache, proxy cache). If any of the caches along the
request path are hit, it uses the copy to satisfy the request.
Caching semantics are standardised in HTTP/1.1. HTTP’s
caching mechanism allows REST-compliant services to be
highly available and performing when specified.

On the other hand, GraphQL is a schema language to
describe an API, an API query language, and a server-side
run-time for executing queries. Unlike REST, GraphQL is not
tied to HTTP, and can exist as an API protocol over any client
server transport protocol. Instead of specifying an intent with
a HTTP verb, in GraphQL there are two types of interactions:
queries and mutations. Queries provide a way to request
data, while mutations provide a way to create, update, and
destroy data. In other words, a GraphQL specification defines
the schema language and the query language that provides
a strongly typed hierarchical way to describe resources as
types, which are connected through graph relationships [8].
At the root of the schema, there is a schema type, which
typically has Query and Mutation types. The GraphQL’s
API query language is modeled after its result language JSON.
A request specifies an intent to either query or mutate the data.
In GraphQL, a query specifies the exact fields which it needs.
Only the specified fields appear in the response, in the exact
structure in which they were requested. The GraphQL’s design
allows clients to specify their own queries, thus letting a single
API meet the needs of many different clients. The ability to
request and receive only the data required allows GraphQL to
avoid over-fetching and under-fetching, which is a common
issue with REST. On the other hand, unlike REST, GraphQL
does not have a built-in caching mechanism. Therefore, due
to the nature of unpredictable dynamic queries, it is not trivial
to devise a robust caching approach to GraphQL.

While GraphQL promises a considerable improvement over
REST, much remains unexplored with respect to its efficiency
and feasibility in its application. This work analyzes REST and
GraphQL from both a quantitative and a qualitative perspec-
tives. The quantitative aspects would focus on comparing the
efficiency of REST to GraphQL in a practical setting. On the
other hand, the qualitative aspects would focus on identifying
what software developers think about REST and GraphQL
based on their practical experience with APIs.

III. RELATED WORK

GraphQL is a relatively new in comparison with REST,
therefore, there is neither a lot of literature analyzing GraphQL
nor empirically comparing the gains of one web service archi-
tectural style over another. Brito et al [9] reviewed blog posts

(grey literature) to understand the benefits and key characteris-
tics of GraphQL, as perceived by practitioners. They conclude
that GraphQL is more efficient in terms of reducing the size
of JSON documents (in terms of number of bytes) by 99%.
Hartig and Perez [10], [11] provide semantics for a formal
query and thereafter analyze the language. Their results show
that GraphQL is a relatively less complex language. Wittern
et al. [12] assessed the feasibility of automatically generating
GraphQL wrappers for existing REST(-like) APIs with Open
API Specification (OAS) and based on this, they studied the
gains achieved between GraphQL and REST. Furthermore,
they discuss the challenges with creating such wrappers,
such as data sanitation, authentication or dealing with nested
queries. Vargas et al. [13] recognize that GraphQL could
become a viable alternative to REST architectural style (which
they believe is flawed and inefficient), however, they note that
GraphQL schema implementation would need to be tested
thoroughly prior to gaining more wider acceptance [14], [15].
Wittern et al. [16] also analyze specific GraphQL schemas
with an aim to understand the strengths and weakness of
this API in practice. They study the design of GraphQL
interfaces in practice by analyzing two GraphQL schemas
(one from 16 commercial GraphQL schemas and one picked
from 8,399 schemas from GitHub projects). Furthermore, their
work highlights the real possibility of security susceptibility
of a majority of GraphQL APIs and provides certain ways to
address these concerns.

Brito and Valente [9] conducted a controlled qualitative
experiment, where 22 students, consisting of combination of
graduate and undergraduates, were asked to implement using
REST and GraphQL, eight (8) queries for accessing a web ser-
vice. Their experiment shows that REST requires more effort,
as compared to GraphQL, to implement remote service queries
(9 minutes versus 6 minutes of median time). Moreover, their
experiment has shown that the time and effort to implement a
REST query increase with more complex endpoints and with
several parameters. Furthermore, they show that implementing
a GraphQL query is easier for participants with no previous
experience with GraphQL. They have studied and contrasted
the effort required and the perception of developers (students)
while implementing remote queries on REST and GraphQL,
and concluded that GraphQL outperforms REST.

However, the state-of-the-art research lacks studies that
combine quantitative and qualitative analysis between REST
and GraphQL. In this work, we try combining both quantitative
analysis of the technology’s performance (response time) and
qualitative study conducted with the GitHub developers who
are working with both API architectures.

IV. METHODOLOGY

To determine whether GraphQL was a viable API architec-
ture over REST, the two architectures are compared using both
quantitative and qualitative analyses. More specifically, this
exploration culminated in three research questions (RQs) that
objectively measure and compare the performance of REST
and GraphQL, as well as allow us to understand their benefits

PR
EP

RIN
T

Fig. 1: A REST request and response.

and weaknesses by studying the perceptions of the GitHub
experts.

A. Research Questions

The primary research questions this paper explores are as
follows:

• RQ1: How do REST and GraphQL compare in terms
of efficiency of a single request? A single REST request
can be compared to a single GraphQL request in terms of
efficiency. A proxy for efficiency that is used here is the
request response time.

• RQ2: What are the benefits and weaknesses of REST and
GraphQL? REST and GraphQL are compared in terms of
their benefits and weaknesses. This is done through a survey
of a community of participants who have experience with
both APIs.

• RQ3: Which API is more likely to be adopted by
developers? The perspectives of experienced developers on
either REST and/or GraphQL are gathered to understand
which technology is likely to receive more adoption relative
to its current adoption, or which technology is better for a
particular reason.

B. Quantitative Analysis

REST and GraphQL can be quantitatively analyzed by
directly comparing their efficiency. For this purpose, a scenario
was developed where a REST API and a GraphQL API
produced the same data, from the same source, in a single
request. For such a scenario to be possible, a REST API would
require a matching GraphQL API which provided the same
resources. GitHub’s public APIs [17] met this criteria and were
used in this study to analyze the efficiency of REST compared
to GraphQL in a single request.

For example, a REST API endpoint such as the one shown
in Figure 1 was taken and was used to construct a GraphQL
query, as shown in Figure 2, which produced a syntactically
similar JSON response. To an API consumer, this response
could be seen as an equivalent query. Both responses request
the same data, and satisfy the same needs.

Fig. 2: A GraphQL request and response.

After developing a query to directly compare the efficiency
of REST and GraphQL, efficiency was assessed in terms of
request response time. Also, the amount of memory used by
each architecture was considered, but since GraphQL requires
a string query to be sent with every request, it would always
use more memory in a single request scenario.

Furthermore, to benchmark requests made to GitHub’s
public REST and GraphQL APIs, the delta of the time right
before a request was calculated, and the time right after the
response was received was considered. When using request
response time as a proxy for efficiency, multiple influential
factors were considered: (i) time taken to transport a request,
(ii) server computation and request handling, and (iii) current
request load of an individual GitHub server.

To account for transport jitters and evaluate load on individ-
ual servers, repeating requests were made using a software, de-
veloped by one of the authors, to benchmark request response
times. This software makes a number of repeating requests to
a HTTP endpoint and has the ability to record each request’s
response time to a table. The source code to this software is
under the MIT license, and is open sourced on GitHub [18].

Prior to analyzing the results of the performance, about
1–5% of the outliers were removed. Thereafter, in order
to analyze the results, we conducted t-tests to compare the
performance of APIs. The t-tests provide us with t and p-
value. The idea was to compare the p-value to the (5%)
significance level of α2.

2If it is less than α, then the null hypothesis is rejected. On the other hand,
if the result is greater than α, then we do not reject the the null hypothesis.

PR
EP

RIN
T

C. Qualitative Analysis

The two APIs were qualitatively analyzed by surveying 38
software developers, who were employees of GitHub Inc. [19]
and had good working knowledge of both REST and GraphQL
APIs. The survey included the following sections:
1) Participant background, documented the participants role

and their level of expertise with REST and GraphQL,
2) Benefits and weaknesses, of the two APIs as reported by

each participant
3) Situational use cases, a matrix type response section

wherein participants reported whether REST, GraphQL,
both, or neither API architecture were suitable for that
specific situation,

4) High level opinion used Likert scale questions which asked
the participants their perspective on a certain features of
REST and GraphQL, and

5) Anticipated adoption: where each participant was asked
to estimate the level of adoption of REST and GraphQL
in 5 and 10 years into the future.

To determine the level of expertise each participant had with
REST and GraphQL, each participant self reported their level
of expertise using the scale developed by McBeath [20].

D. Survey Participants

The university’s Ethics Review Board approval for the entire
experiment was obtained prior to electronically distributing the
survey to the GitHub’s internal forum. Qualtrics3, an online
survey platform, was used to conduct the survey and data
collection.

This survey study analyzes the responses received from
38 GitHub employees. We report the characteristics of the
participants in our study.

1) Main Role: 90% of the respondents have identified
themselves as engineers (34 out of 38 of the respondents).

2) Years of Experience: 82% have 5+ years of experience in
working on web systems and/or their ecosystem (tooling,
documentation, managing a team)

3) Expertise with REST APIs: 25 of the 38 respondents
were either advanced users or highly accomplished, while
11 are intermediate users and the remaining 2 have
indicated that they are apprentices.

4) Expertise with GraphQL API: Given that GraphQL is
a relatively new, it is very much expected that the spread
of expertise would be skewed towards the lower-scale;
this is indeed reflected in the self-declaration by GitHub
employees. Only 11 out of 38 have self-identified as
advanced and/or accomplished users; 7 have noted that
they are intermediate users and 11 have noted that they
are apprentices; lastly, 9 out of the 38 are either beginners
(5), or pursuing (3) or interested (1).

V. RESULTS

We now present the results of the quantitative and qualitative
studies.

3https://www.qualtrics.com/

Fig. 3: Response times for GET/user.

Fig. 4: Response times for POST /repos/:owner/
:repo/issues/:issue_number/comments.

A. Quantitative Results

The REST requests and their equivalent GraphQL requests
were executed, and their response times were measured and
analyzed for comparison. For each request query, 50 requests
were run to get their response times for each API architecture.
It is noted that the error bars in Figure 3, Figure 4, Figure 5,
and Figure 6 represent 95% confidence intervals. Table I
summarizes the average response time of running the same
query on GraphQL and REST APIs.

The REST endpoint GET/user (Query 1) and its equiva-
lent GraphQL query yielded the response times seen in Fig-
ure 3. In essence, for the GET/user query, the response time
was not significantly different between REST and GraphQL (
t(88)=-0.482, p = 0.631).

The REST endpoint POST /repos/:owner/
:repo/issues/:issue_number/comments (Query
2) and its equivalent GraphQL query yielded the response
times seen in Figure 4. For this query, it is observed that the
response time was not significantly different between REST
and GraphQL, t(96)=0.278, p = 0.781.

The REST query for GET/repos/:owner/:repo/
issues/:issue_number (Query 3) and its equivalent
GraphQL query, yielded the response times as shown in
Figure 5. For this query, the response times were significantly
lower for GraphQL than for REST (t(94)=35.878, p <

TABLE I: Average response time (ms): REST & GraphQL.
Query REST GraphQL
Query 1 171.16 176.96
Query 2 627.00 606.34
Query 3 225.44 144.88
Query 4 338.16 388.46

https://www.qualtrics.com/

PR
EP

RIN
T

Fig. 5: Response times for GET/repos/:owner/:repo/
issues/:issue_number.

Fig. 6: Response times for GET/repos/:owner/:repo/
stargazers.

0.001). In other words, GraphQL performed better than REST.
The REST endpoint GET/repos/:owner/:repo/

stargazers (Query 4) and its equivalent GraphQL query,
yielded the response times as reported in Figure 6. For this
query, the response times were significantly lower for REST
than for GraphQL (t(91)=-5.600, p < 0.001), i.e., REST
performed better than GraphQL.

The quantitative analysis compared REST and GraphQL in
terms of efficiency of a single request and the request response
time was used as a proxy for efficiency. REST outperformed
GraphQL in one scenario, GraphQL outperformed REST in
another, and they performed very similarly in two scenarios.
Based on the results of the quantitative analysis, there does
not seems to be any statistically significant difference in
performance between REST and GraphQL in terms of their
efficiency.

B. Qualitative Results

Our qualitative study attempts to understand the developer
perceptions about REST and GraphQL and is based on a
survey with 38 GitHub employees, with expertise in REST
and some level of familiarity and/or expertise with GraphQL.
The survey asked the participants the perceived benefits and
weakness of GraphQL and REST. In addition, the survey
focused on efficiency of GraphQL in requesting resources,
its maintainability and potential benefits for organizations that
have REST APIs from adopting a GraphQL API. Lastly,
the survey asked the participants on their expectation of the
adoption of GraphQL over the next 5 years and also on their
expectation for REST API.

The qualitative analysis showed that there is no clear winner
between both REST and GraphQL APIs. Each of them had
their benefits and weaknesses and neither can be declared
as the winner. However, it was noted that GraphQL is a
relatively new system and it would take sometime for it to
be more widely accepted and adopted and only then it could
be accurately compared with a more mature REST system.

GraphQL is obviously has some clear advantages when it
comes to over-fetching of resources and can reduce the need
for making round trip responses. Moreover, the survey partic-
ipants noted that having a strong typed protocol language, a
built-in type validation and having an inline documentation are
benefits of GraphQL. Furthermore GraphiQL schema explorer
tool provided by GraphQL is seen as an added advantage.
Lastly, a minority of participants reported “GraphQL can
increase performance” as a benefit. Notwithstanding the effi-
ciency related advantages possessed by GraphQL the survey
respondents not identified simplicity, ease of testing, main-
tainability, faster product development as major benefits of
GraphQL. Interestingly, only a minority of developers thought
that lack of caching mechanism was a major cause of concern
or weakness of GraphQL.

On the other hand, the respondents have noted that learning
GraphQL requires a major time commitment. One of the
participant has noted that “It’s INCREDIBLY hard to learn.
It’s a pain . . . to test. People seem to think that GraphQL is
intended to used to expose a multi-purpose API. At GitHub,
at least, it adds a ton of unnecessary complexity, and they
reinvented promises instead of upstreaming the minimum nec-
essary batching logic into ActiveRecord. I wish GraphQL were
only used to create page-specific queries for mobile.”. Another
participant noted in the similar lines that GraphQL requires
“the mental overhead”. Moreover, GraphQL is a relatively
new system and knowledge about it is not widespread; one
respondent noted that, it is “difficult to migrate an existing
project to use GraphQL instead of REST; hard to find devs
who are already knowledgeable with it”. This comment also
notes that it is not very easy to migrate an existing project
from an architectural style to GraphQL.

Furthermore, GraphQL is perceived to add complexity to a
system. This is reflected in the comments of some of the survey
participants. The consequences of this added complexity are
reported as misusing the technology, not feeling completely
confident in understanding the technology, and implementing
solutions at the wrong layer of abstraction. Several responses
highlight weakness of GraphQL that allude to how it adds
complexity to a system.
• “It is fundamentally confusing when applied to resources

which are not actually graphs.”,
• “It’s often assumed in the talks, libraries etc, that you own

the backend and client side of the GraphQL exchange. That
is not always the case. In this case, you need to think about
the interface from an external point of view just like REST.
I don’t believe enough folks do this.”
Furthermore, another major weakness of GraphQL is that it

can cause N+1 problems without proving a way to solve them.

PR
EP

RIN
T

TABLE II: API architecture scenarios.

REST is Preferred REST is NOT Preferred

• A mission-critical real-
time API

• A service that provides
static content through
an API

• A small sized public
web service project

• A very small internal
web service project

• API first product for millions of users
(large size project)

• Internal web service for other internal
services to interact with

• API for multiple different clients to use
• A very large internal web service project
• A medium sized public web service

project
• A medium sized internal web service

project

Rest is preferred means the number of people who voted for REST is greater
than or equal to GraphQL and/or both REST and GraphQL, together.
Rest is NOT preferred means the opposite.

This is echoed in the following response from a respondent,
“I’m not sure if it’s just our app or all GraphQL but there are
huge performance hits due to using GraphQL. We have many
N+1’s, boot time of the application is slowed drastically by
GraphQL, and if GraphQL is supposed to fetch less resources
than REST, our app isn’t accomplishing that.”. This comments
reflects on the performance issues of using such a large
framework.

REST, on the other hand, enjoys the benefit of widespread
knowledge, it has a mature ecosystem of libraries and tooling
and given that it is in existence for quite sometime there are
ample of available resources hence making it easy to learn.
Also, REST uses status codes to convey a request status and
since it is built upon HTTP, only a HTTP library is needed. For
example, a respondent noted that the advantage of REST is that
most projects already use it and hence there is no additional
requirement to migrate to it (“Most existing projects already
use it and so no need to migrate.”).

The main weaknesses of REST is that REST API users
might need to make multiple round trip requests and the
responsibility is on the developer to ensure that REST is
implemented correctly. Moreover, REST is a weakly typed
and API users cannot avoid over-fetching. Interestingly, there
seems to be little agreement on what REST is, for example,
one respondent noted “REST client-side tooling is haphazard,
ranging from unopinionated to overly complicated/too far
reaching...There is no one source-of-truth spec doc for REST.
GraphQL’s client-side tooling is more opinionated, result-
ing in more uniform usage and understanding of GraphQL.
GraphQL’s spec is published publicly, as a single source of
truth.”. Furthermore, one participant mentioned versioning is
one weakness of REST. REST APIs are difficult to deprecate
because they are usually versioned-like dependencies. Unlike
static dependencies which can be versioned independently of
their clients, REST APIs are live, and changing behavior of a
REST API breaks all clients that depend on it. For example,
a respondent noted that “The biggest downside for me with
REST is the versioning.”.

Thereafter, the participants were given certain scenarios and
were asked whether they prefer REST, GraphQL, both of them
or neither, in each of those scenarios. Table II summarizes
the scenarios where REST is preferred over either GraphQL

Fig. 7: GraphQL’s efficiency, using a Likert scale.

Fig. 8: Can organizations with public REST APIs benefit from
adopting GraphQL?

or having both GraphQL and REST together and vice versa.
It is evident from these results that REST API architectural
style is preferred for small sized public and/or internal web
service projects; also, REST is preferred when there is a
mission critical real-time API involved. On the other hand, for
medium- to large-scale projects and for projects with multiple
clients developers prefer GraphQL and/or both REST and
GraphQL together.

A majority (55%) of participants agreed that GraphQL APIs
make it easier to efficiently request resources. On the other
hand, about 36% of participants remained neutral. Figure 7
illustrates how participants reported their agreement with the
statement about GraphQL’s efficiency using a Likert scale.

Figure 8 shows how participants reported their agreement
with a statement about whether organizations which have
REST APIs could benefit from adopting a GraphQL API. 47%
of participants agree with the statement that organizations with
public REST APIs could benefit from adopting GraphQL. We
can also observe that 36% of participants’ opinion remains
as neutral. Figure 9 reports the reaction of participants on the
statement about whether GraphQL APIs are more maintainable
than REST APIs. The survey indicated that 34% of participants
disagree with the statement that GraphQL APIs are more
maintainable than REST APIs; whereas, 42% of participants
remained neutral on this subject.

Finally, the survey asked the respondents about how they
anticipate the level of adoption of GraphQL in the next five-
year horizon. The majority of respondents (57%) indicated
that they believe GraphQL will receive more adoption in the
next 5 years. Also, 26% reported that GraphQL would receive
the same amount of adoption in the next 5 years. Whereas,
about 11% of the respondents indicated that the adoption of

PR
EP

RIN
T

Fig. 9: Are GraphQL more maintainable than REST?

GraphQL would go down in the next five years. Similarly, the
respondents were asked about their view on the adoption of
REST in the next five years. It is interesting to note that about
65% of participants reported that they believe REST would
continue to receive the same amount of adoption in the next 5
years; and, 21% reported that they believe that REST would
receive more adoption in the next 5 years, whereas, only 8%
indicated that the usage of REST APIs would go down in the
next five years.

C. Answers to Research Questions

While we presented the overall results of the quantitative
and qualitative studies, we now highlight and summarize the
answers to our research questions.

Answer to RQ1: How does REST and GraphQL compare
in terms of efficiency of a single request? When using request
response time as a proxy for efficiency (RQ1), we found
that REST outperformed GraphQL in one scenario, GraphQL
outperformed REST in another scenario, and they performed
very similarly in the other two scenarios. As a conclusion,
in terms of efficiency of the single request, there is no clear
winner between the two APIs.

Answer to RQ2: What are the benefits and downsides
of REST and GraphQL? Table III and Table IV summarize
benefits and weaknesses of REST and GraphQL, respectively.
According to a majority of participants, REST is perceived
to be easy to learn with lots of resources, on the other hand,
most respondents found that GraphQL is difficult to learn and
requires more time commitment, and that its knowledge base
is limited. One explanation for this could be that GraphQL is
still relatively new and its resources might not be fully devel-
oped. Notwithstanding, most respondents state that GraphQL
reduces over-fetching and hence reduces the need for making
round-trip requests; this is indeed the biggest pitfall with
REST.

Answer to RQ3: How do developers view REST compared
with GraphQL? Majority of participants (55%) reported that
GraphQL APIs make it easier to efficiently request resources
than REST APIs. 47% of participants agreed with the state-
ment that organizations with public REST APIs could benefit
from adopting GraphQL, while 36% of participants remained
neutral. 34% of participants disagreed with the statement that
GraphQL APIs are more maintainable than REST APIs, while
42% of participants remained neutral. A majority (57%) of

TABLE III: Top benefits and weakness of REST.

Top Benefits Top Weakness

• Widespread knowledge (32)
• Mature tooling ecosystem

(29)
• Easy to learn (27)
• Uses status codes to convey

request status (26)
• Built on HTTP (23)

• APIs requires multiple round trip re-
quests (34)

• Onus on developer to ensure correct
implementation (31)

• Weakly typed (16)
• Over-fetching (16)
• Significant effort to document (16)

(The number in brackets represent the votes received.)

the participants anticipate that GraphQL would receive more
adoption over the next 5 years, while most (65%) of the
participants anticipate that REST would receive about the same
amount of adoption as it currently has over the next 5 years.

VI. DISCUSSION

We now discuss key findings related to API efficiency,
promise and pitfalls of GraphQL, as well as threats to validity.

A. APIs Performance

In the quantitative analysis of response times from a single
REST and GraphQL request, one case was observed where
REST outperformed GraphQL, one case was observed where
GraphQL outperformed REST, and two cases were observed
where they performed very similarly. These results do not
conclusively demonstrate which API architecture is more
efficient overall, and suggest that there are scenarios where
each might be slightly preferable.

Although a sample of four request pairs is not a large
enough to generalize to all GraphQL and REST APIs, it does
suggest that GraphQL is sometimes more efficient than REST
in a single request scenario. And, overall these results suggest
that the two API architectures perform similarly in terms of
efficiency in a single request.

The qualitative results indicated that GraphQL can benefit
by reducing the need to make multiple round trip requests
(under-fetching), and that reduces over-fetching. However, the
qualitative findings are partially consistent with the quantita-
tive findings where GraphQL performed similarly to REST in
a single request. In the case, where REST would cause under
fetching, GraphQL would significantly outperform multiple
REST requests in terms of speed, assuming network speed
is a significant factor. In the case of over-fetching, GraphQL
would not necessarily outperform REST in terms of request
speed, if the over-fetching is not significant.

B. GraphQL’s Promise

In an over-fetching scenario GraphQL might not outperform
REST, but it still performs similarly to REST in a single
request comparison, and therefore would be considered a
viable alternative to REST. Furthermore, GraphQL would
be more efficient than REST in an under-fetching scenario.
Assuming that under-fetching scenarios are common, then
GraphQL would be a viable API architecture over REST.

From an application perspective, one should consider using
REST or GraphQL when developing a medium to very large

PR
EP

RIN
T

TABLE IV: Top benefits and weakness of GraphQL

Top Benefits Top Weakness

• Reduces over-fetching (27)
• Strongly typed protocol lan-

guage (26)
• Reduced the need for mak-

ing round trip requests (25)
• Built-in type validation (24)
• GraphiQL schema API ex-

plorer (23)

• Learning requires substantial time
investment (29)

• Does not have widespread knowl-
edge base (26)

• Potential to cause more problems
without providing a guide to solve
them (21)

• Tooling ecosystem is not well devel-
oped (17)

• Does note provide a way to calculate
issue complexity (17)

(The number in brackets represent the votes received.)

sized public web service, or when developing a medium
sized internal service. According to a majority of participant
perspectives, one should consider GraphQL over REST if they
want to make it easier to request resources efficiently. If under-
fetching is a common occurrence in your API, then GraphQL
would offer a more efficient architecture. One should consider
GraphQL if they are willing to take the trade-offs of GraphQL
over the trade-offs of REST.

C. GraphQL’s Pitfalls

Despite these findings, participants considered GraphQL
less frequently than REST in all scenarios. An explanation
for this could include multiple factors unrelated to efficiency.
One factor might be that knowledge about GraphQL is not
yet widespread, whereas knowledge about REST is. Another
factor might be that REST is a more mature API architecture
with a strong ecosystem of tools and frameworks, whereas
GraphQL’s tooling and framework ecosystem is much newer
and still maturing. These factors could be mitigated by in-
creased adoption of GraphQL, which a majority (57%) of
participants anticipate will occur over the next 5 years.

D. Threats to Validity

A limitation of this study is that we treat both REST and
GraphQL APIs as black boxes and assume that they rely on the
same logic. This assumption could be false in some cases, and
would render our measurements irrelevant. However, it is very
likely that GitHub models their REST API and GraphQL API
using shared modeling, since it would require less code for
them to maintain two interfaces which behave the same way.
Furthermore, this study only analyzed only four REST and
GraphQL query pairs. A more thorough examination of which
API architecture performs better in a single request scenario, it
is important to analyze a larger sample of REST and GraphQL
query pairs. Another limitation of this study was that it focused
on GitHub’s API, which is a Ruby on Rails implementation.
Other GraphQL APIs could be implemented differently and
could potentially yield different results. A limitation on the
qualitative study is that only a small subset of developers
at GitHub were surveyed, and they do not represent a more
general developer community. However, GitHub has a high
level of expertise in this area, and the opinions of the GitHub
experts who are familiar with both APIs should be valuable.

VII. CONCLUSION

This paper explores whether GraphQL is a viable alternative
API architecture over REST by measuring and comparing
the time performance efficiency in terms of request response;
and, by assessing their benefits and weaknesses, and gathering
developer perspectives on the two API architectures.

ACKNOWLEDGEMENTS

We thank GitHub and their 38 employees who participated
in the study and helped in progressing research on this topic.

REFERENCES

[1] L. Byron, “GraphQL: A data query language, Facebook
Engineering,” 2015. [Online]. Available: https://engineering.fb.com/
core-data/graphql-a-data-query-language

[2] The Linux Foundation, “The Linux Foundation Announces
Intent to Form New Foundation to Support GraphQL,” 2018.
[Online]. Available: https://www.linuxfoundation.org/press-release/
2018/11/intent to form graphql

[3] GitHub Engineering, “The GitHub GraphQL API,” 2016. [Online].
Available: https://github.blog/2016-09-14-the-github-graphql-api

[4] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer
protocol – http/1.0, rfc 1945,” 05 1996. [Online]. Available:
https://www.rfc-editor.org/info/rfc1945

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
“Hypertext transfer protocol – http/1.1, rfc 2068,” 01 1997. [Online].
Available: https://www.rfc-editor.org/info/rfc2068

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures. order no. 9980887, university of california,
irvine,” 2000. [Online]. Available: https://amturing.acm.org/award
winners/berners-lee 8087960.cfm

[7] T. Berners-Lee, “Sir tim berners-lee - a.m. turing award laureate,
am turing,” 2016. [Online]. Available: https://amturing.acm.org/award
winners/berners-lee 8087960.cfm

[8] GraphQL, “GraphQL Specification: June 2018 Edition,” 2018. [Online].
Available: https://graphql.github.io/graphql-spec/June2018

[9] G. Brito and M. T. Valente, “Rest vs GraphQL: A Controlled Experi-
ment,” arXiv preprint arXiv:2003.04761v, 03 2020.

[10] O. Hartig and J. Perez, “An initial analysis of facebook’s graphql lan-
guage,” 11th Alberto Mendelzon International Workshop on Foundations
of Data Management and the Web (AMW), pp. 1–10, 2017.

[11] ——, “Semantics and complexity of graphql,” 27th World Wide Web
Conference on World Wide Web (WWW), pp. 1155–1164, 2018.

[12] E. Wittern, A. Cha, and J. Laredo, “Generating graphql-wrappers for rest
(-like) apis,” International Conference on Web Engineering, pp. 65–83,
2018.

[13] D. M. Vargas, A. F. Blanco, A. C. Vidaurre, J. P. S. Alcocer, M. M.
Torees, and A. B. ane S. Ducasse, “Deviation testing: A test case
generation technique for graphql apis,” 11th International Workshop on
Smalltalk Technologies (IWST), pp. 1–9, 2018.

[14] Yelp. Graphql intro - yelp. [Online]. Available: https://www.yelp.com/
developers/graphql/guides/intro

[15] Apollo GraphQL. Apollo GraphQL, The Apollo Data Graph Platform.
[Online]. Available: https://www.apollographql.com/

[16] E. Wittern, A. Cha, J. Davis, G. Baudart, and L. Mandel, “An empirical
study of graphql schemas,” arXiv preprint arXiv:1907.13012, 2019.

[17] GitHub. GitHub Public APIs. [Online]. Available: https://github.com/
public-apis/public-apis

[18] J. Arts. A web-based api client. [Online]. Available: https://github.com/
joshua-arts/web-api-client

[19] Wikipedia contributors, “GitHub — Wikipedia, The Free Encyclopedia,”
2020, [Online; accessed 16-October-2020]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=GitHub&oldid=985080121

[20] J. McBeath, “Levels of expertise,” 2018. [Online]. Available:
http://jim-mcbeath.blogspot.com/2011/12/levels-of-expertise.html

https://engineering.fb.com/core-data/graphql-a-data-query-language
https://engineering.fb.com/core-data/graphql-a-data-query-language
https://www.linuxfoundation.org/press-release/2018/11/intent_to_form_graphql
https://www.linuxfoundation.org/press-release/2018/11/intent_to_form_graphql
https://github.blog/2016-09-14-the-github-graphql-api
https://www.rfc-editor.org/info/rfc1945
https://www.rfc-editor.org/info/rfc2068
https://amturing.acm.org/award_winners/berners-lee_8087960.cfm
https://amturing.acm.org/award_winners/berners-lee_8087960.cfm
https://amturing.acm.org/award_winners/berners-lee_8087960.cfm
https://amturing.acm.org/award_winners/berners-lee_8087960.cfm
https://graphql.github.io/graphql-spec/June2018
https://www.yelp.com/developers/graphql/guides/intro
https://www.yelp.com/developers/graphql/guides/intro
https://www.apollographql.com/
https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis
https://github.com/joshua-arts/web-api-client
https://github.com/joshua-arts/web-api-client
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=985080121
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=985080121
http://jim-mcbeath.blogspot.com/2011/12/levels-of-expertise.html

